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Abstract
When learning policies for real-world domains,
two important questions arise: (i) how to effi-
ciently use pre-collected off-policy, non-optimal
behavior data; and (ii) how to mediate among dif-
ferent competing objectives and constraints. We
thus study the problem of batch policy learning un-
der multiple constraints, and offer a systematic so-
lution. We first propose a flexible meta-algorithm
that admits any batch reinforcement learning and
online learning procedure as subroutines. We then
present a specific algorithmic instantiation and
provide performance guarantees for the main ob-
jective and all constraints. To certify constraint
satisfaction, we propose a new and simple method
for off-policy policy evaluation (OPE) and derive
PAC-style bounds. Our algorithm achieves strong
empirical results in different domains, including
in a challenging problem of simulated car driv-
ing subject to multiple constraints such as lane
keeping and smooth driving. We also show exper-
imentally that our OPE method outperforms other
popular OPE techniques on a standalone basis,
especially in a high-dimensional setting.

1. Introduction
We study the problem of policy learning under multiple con-
straints. Contemporary approaches to learning sequential
decision making policies have largely focused on optimizing
some cost objective that is easily reducible to a scalar value
function. However, in many real-world domains, choosing
the right cost function to optimize is often not a straight-
forward task. Frequently, the agent designer faces multiple
competing objectives. For instance, consider the aspirational
task of designing autonomous vehicle controllers: one may
care about minimizing the travel time while making sure
the driving behavior is safe, comfortable, or fuel efficient.
Indeed, many such real-world applications require the pri-
mary objective function be augmented with an appropriate
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set of constraints (Altman, 1999).

Contemporary policy learning research has largely focused
on either online reinforcement learning (RL) with a focus on
exploration, or imitation learning (IL) with a focus on learn-
ing from expert demonstrations. However, many real-world
settings already contain large amounts of pre-collected data
generated by existing policies (e.g., existing driving behav-
ior, power grid control policies, etc.). We thus study the
complementary question: can we leverage this abundant
source of (non-optimal) behavior data in order to learn se-
quential decision making policies with provable guarantees
on constraint satisfaction?

We thus propose and study the problem of batch policy
learning under multiple constraints. Historically, batch RL
is regarded as a subfield of approximate dynamic program-
ming (ADP) (Lange et al., 2012), where a set of transitions
sampled from the existing system is given and fixed. From
an interaction perspective, one can view many online RL
methods (e.g., DDPG (Lillicrap et al., 2016)) as running a
growing batch RL subroutine per round of online RL. In
that sense, batch policy learning is complementary to any
exploration scheme. To the best of our knowledge, the study
of constrained policy learning in the batch setting is novel.

We present an algorithmic framework for learning sequential
decision making policies from off-policy data. We employ
multiple learning reductions to online and supervised learn-
ing, and present an analysis that relates performance in the
reduced procedures to the overall performance with respect
to both the primary objective and constraint satisfaction.

Constrained optimization is a well studied problem in su-
pervised machine learning and optimization. In fact, our ap-
proach is inspired by the work of Agarwal et al. (2018) in the
context of fair classification. In contrast to supervised learn-
ing for classification, batch policy learning for sequential
decision making introduces multiple additional challenges.
First, setting aside the constraints, batch policy learning
itself presents a layer of difficulty, and the analysis is signif-
icantly more complicated. Second, verifying whether the
constraints are satisfied is no longer as straightforward as
passing the training data through the learned classifier. In
sequential decision making, certifying constraint satisfac-
tion amounts to an off-policy policy evaluation problem,
which is a challenging problem and the subject of active
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research. In this paper, we develop a systematic approach
to address these challenges, provide a careful error analysis,
and experimentally validate our proposed algorithms. In
summary, our contributions are:

• We formulate the problem of batch policy learning un-
der multiple constraints, and present the first approach
of its kind to solve this problem. The definition of
constraints is general and can subsume many objec-
tives. Our meta-algorithm utilizes multi-level learning
reductions, and we show how to instantiate it using
various batch RL and online learning subroutines. We
show that guarantees from the subroutines provably
lift to provide end-to-end guarantees on the original
constrained batch policy learning problem.

• Leveraging techniques from batch RL as a subrou-
tine, we provide a refined theoretical analysis for gen-
eral non-linear function approximation that improves
upon the previously known sample complexity bound
(Munos & Szepesvári, 2008) from O(n4) to O(n2).

• To evaluate and verify constraint satisfaction, we pro-
pose a simple new technique for off-policy policy eval-
uation, which is used as a subroutine in our main algo-
rithm. We show that it is competitive to other off-policy
policy evaluation methods.

• We validate our algorithm and analysis with two ex-
perimental settings. First, a simple navigation do-
main where we consider safety constraint. Second, we
consider a high-dimensional racing car domain with
smooth driving and lane keeping constraints.

2. Problem Formulation
We first introduce notation. Let X ⊂ Rd be a bounded and
closed d-dimensional state space. Let A be a finite action
space. Let c : X×A 7→ [0, C] be the primary objective cost
function that is bounded by C. Let there be m constraint
cost functions, gi : X × A 7→ [0, G], each bounded by
G. To simplify the notation, we view the set of constraints
as a vector function g : X × A 7→ [0, G]m where g(x, a)
is the column vector of individual gi(x, a). Let p(·|x, a)
denote the (unknown) transition/dynamics model that maps
state/action pairs to a distribution over the next state. Let
γ ∈ (0, 1) denote the discount factor. Let χ be the initial
states distribution.

We consider the discounted infinite horizon setting. An
MDP is defined using the tuple (X,A, c, g, p, γ, χ). A pol-
icy π ∈ Π maps states to actions, i.e., π(x) ∈ A. The
value function Cπ : X 7→ R corresponding to the pri-
mary cost function c is defined in the usual way: Cπ(x) =
E [
∑∞
t=0 γ

tc(xt, at) | x0 = x], over the randomness of the
policy π and transition dynamics p. We similarly define the
vector-value function for the constraint costsGπ : X 7→ Rm

as Gπ(x) = E [
∑∞
t=0 γ

tg(xt, at)|x0 = x]. Define C(π)
and G(π) as the expectation of Cπ(x) and Gπ(x), respec-
tively, over the distribution χ of initial states.

2.1. Batch Policy Learning under Constraints

In batch policy learning, we have a pre-collected dataset,
D = {(xi, ai, x′i, c(xi, ai), g1:m(xi, ai)}ni=1, generated
from (a set of) historical behavioral policies denoted jointly
by πD. The goal of batch policy learning under constraints is
to learn a policy π ∈ Π from D that minimizes the primary
objective cost while satisfying m different constraints:

min
π∈Π

C(π)

s.t. G(π) ≤ τ
(OPT)

where G(·) = [g1(·), . . . , gm(·)]> and τ ∈ Rm is a vector
of known constants. We assume that (OPT) is feasible.
However, the dataset D might be generated from multiple
policies that violate the constraints.

2.2. Examples of Policy Learning with Constraints

Counterfactual & Safe Policy Learning. In conventional
online RL, the agent needs to “re-learn” from scratch when
the cost function is modified. Our framework enables coun-
terfactual policy learning assuming the ability to compute
the new cost objective from the same historical data. A
simple example is safe policy learning (Garcıa & Fernández,
2015). Define safety cost G(x, a) = φ(x, a, c) as a new
function of existing cost c and features associated with cur-
rent state-action pair. The goal here is to counterfactually
avoid undesirable behaviors observed from historical data.
We experimentally study this safety problem in Section 5.

Other examples from the literature that belong to this safety
perspective include planning under chance constraints (Ono
et al., 2015; Blackmore et al., 2011). The constraint here is
G(π) = E[I(x ∈ Xerror)] = P(x ∈ Xerror) ≤ τ .

Multi-objective Batch Learning. Traditional policy learn-
ing (RL or IL) presupposes that the agent optimizes a single
cost function. In reality, we may want to satisfy multiple
objectives that are not easily reducible to a scalar objective
function. One example is learning fast driving policies un-
der multiple behavioral constraints such as smooth driving
and lane keeping consistency (see Section 5).

2.3. Equivalence between Constraint Satisfaction and
Regularization

Our constrained policy learning framework subsumes sev-
eral existing regularized policy learning settings. Regular-
ization typically encodes prior knowledge, and has been
used extensively in the RL and IL literature to improve
learning performance. Many instances of regularized policy
learning can be naturally cast into (OPT):
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• Entropy regularized RL (Haarnoja et al., 2017; Ziebart,
2010) is equivalent to G(π) = H(π), where H(π)
measures policy entropy.

• Smooth imitation learning (Le et al., 2016) is equiva-
lent toG(π) = minh∈H ∆(h, π), whereH is a class of
provably smooth policies and ∆ is a divergence metric.

• Regularizing RL with expert demonstration (Hes-
ter et al., 2018) is equivalent to G(π) =
E[`(π(x), π∗(x))], where π∗ is the expert policy.

• Conservative policy improvement (Levine & Abbeel,
2014; Schulman et al., 2015; Achiam et al., 2017) is
equivalent to G(π) = DKL(π, πk), where πk is some
“well-behaving” policy.

We provide a detailed equivalence derivation of the above
examples in Appendix A. Of course, some problems are
more naturally described using the regularization perspec-
tive, while others using constraint satisfaction.

More generally, one can establish the equivalence between
regularized and constrained policy learning via a simple
appeal to Lagrangian duality as shown in Proposition 2.1
below. This Lagrangian duality also has a game-theoretic
interpretation (Section 5.4 of Boyd & Vandenberghe (2004)),
which serves as an inspiration for developing our approach.

Proposition 2.1. Let Π be a convex set of policies. Let
C : Π 7→ R, C : Π 7→ RK be value functions. Consider the
two policy optimization tasks:

Regularization: min
π∈Π

C(π) + λ>G(π)

Constraint: min
π∈Π

C(π) s.t. G(π) ≤ τ

Assume that the Slater’s condition is satisfied in the
Constraint problem (i.e., ∃π s.t. G(π) < τ ). As-
sume also that the constraint cannot be removed with-
out changing the optimal solution, i.e., infπ∈Π C(π) <
infπ∈Π:G(π)≤τ C(π). Then ∀ λ > 0, ∃ τ , and vice versa,
such that Regularization and Constraint share
the same optimal solutions. (Proof in Appendix A.)

3. Proposed Approach
To make use of strong duality, we first convexify the policy
class Π by allowing stochastic combinations of policies,
which effectively expands Π into its convex hull Conv(Π).
Formally, Conv(Π) contains randomized policies,1 which
we denote π =

∑T
t=1 αtπt for πt ∈ Π and

∑T
t=1 αt = 1.

Executing a mixed π consists of first sampling one policy
πt from π1:T according to distribution α1:T , and then exe-
cuting πt. Note that we still have E[π] =

∑T
t=1 αtE[πt] for

any first-moment statistic of interest (e.g., state distribution,
expected cost). It is easy to see that the augmented version

1This places no restrictions on the individual policies. Individ-
ual policies can be arbitrarily non-convex. Convexifiying a policy
class amounts to allowing ensembles of learned policies.

Algorithm 1 Meta-algo for Batch Constrained Learning
1: for each round t do
2: πt ← Best-response(λt)

3: π̂t ← 1
t

∑t
t′=1 πt′ , λ̂t ←

1
t

∑t
t′=1 λt′

4: Lmax = maxλ L(π̂t, λ)

5: Lmin = L(Best-response(λ̂t), λ̂t)
6: if Lmax − Lmin ≤ ω then
7: Return π̂t
8: λt+1 ← Online-algorithm(π1, . . . , πt−1, πt)

of (OPT) over Conv(Π) has a solution at least as good as
the original (OPT). As such, to lighten the notation, we will
equate Π with its convex hull for the rest of the paper.

3.1. Meta-Algorithm

The Lagrangian of (OPT) is L(π, λ) = C(π)+λ>(G(π)−
τ) for λ ∈ Rm+ . Clearly (OPT) is equivalent to the min-max
problem: min

π∈Π
max
λ∈Rk+

L(π, λ). We assume (OPT) is feasible

and that Slater’s condition holds (otherwise, we can simply
increase the constraint τ by a tiny amount). Slater’s con-
dition and policy class convexification ensure that strong
duality holds (Boyd & Vandenberghe, 2004), and (OPT) is
also equivalent to the max-min problem:max

λ∈Rk+
min
π∈Π

L(π, λ).

Since L(π, λ) is linear in both λ and π, strong duality is
also a consequence of von Neumann’s celebrated convex-
concave minimax theorem for zero-sum games (Von Neu-
mann & Morgenstern, 2007). From a game-thoeretic per-
spective, the problem becomes finding the equilibrium of a
two-player game between the π−player and the λ−player
(Freund & Schapire, 1999). In this repeated game, the
π−player minimizes L(π, λ) given the current λ, and the
λ−player maximizes it given the current (mixture over) π.

We first present a meta-algorithm (Algorithm 1) that uses
any no-regret online learning algorithm (for λ) and batch
policy optimization (for π). At each iteration, given λt, the
π-player runs Best-response to get the best response:
Best-response(λt) = arg min

π∈Π
L(π, λt)

= arg min
π∈Π

C(π) + λ>t (G(π)− τ).

This is equivalent to a standard batch reinforcement learn-
ing problem where we learn a policy that is optimal with
respect to c+λ>t g. The corresponding mixed strategy is the
uniform distribution over all previous πt. In response to the
π−player, the λ−player employs Online-algorithm,
which can be any no-regret algorithm that satisfies:∑

t

L(πt, λt) ≥ max
λ

∑
t

L(πt, λ)− o(T )

Finally, the algorithm terminates when the estimated primal-
dual gap is below a threshold ω (Lines 7-8).

Leaving aside (for the moment) issues of generalization,
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Algorithm 2 Constrained Batch Policy Learning
Input: Dataset D = {xi, ai, x′i, ci, gi}ni=1 ∼ πD. Online algo-

rithm parameters: `1 norm bound B, learning rate η
1: Initialize λ1 = ( B

m+1
, . . . , B

m+1
) ∈ Rm+1

2: for each round t do
3: Learn πt ← FQI(c+ λ>t g) // FQI with cost c+ λ>t g

4: Evaluate Ĉ(πt)← FQE(πt, c) // Algo 3 with πt, cost c
5: Evaluate Ĝ(πt)← FQE(πt, g) // Algo 3 with πt, cost g
6: π̂t ← 1

t

∑t
t′=1 πt′

7: Ĉ(π̂t)← 1
t

∑t
t′=1 Ĉ(πt′), Ĝ(π̂t)← 1

t

∑t
t′=1 Ĝ(πt′)

8: λ̂t ← 1
t

∑t
t′=1 λt′

9: Learn π̃ ← FQI(c+ λ̂>t g) // FQI with cost c+ λ̂>t g

10: Evaluate Ĉ(π̃)← FQE(π̃, c), Ĝ(π̃)← FQE(π̃, g)

11: L̂max = max
λ,‖λ‖1=B

(
Ĉ(π̂t) + λ>

[
(Ĝ(π̂t)− τ)>, 0

]>)
12: L̂min = Ĉ(π̃) + λ̂>t

[
(Ĝ(π̃)− τ)>, 0

]>
13: if L̂max − L̂min ≤ ω then
14: Return π̂t
15: Set zt =

[
(Ĝ(πt)− τ)>, 0

]>
∈ Rm+1

16: λt+1[i] = B λt[i]e
−ηzt[i]∑

j λt[j]e
−ηzt[j]

∀i // λ[i] the ith coordinate

Algorithm 1 is guaranteed to converge assuming: (i)
Best-response gives the best single policy in the class,
and (ii) Lmax and Lmin can be evaluated exactly.

Proposition 3.1. Assuming (i) and (ii) above, Algorithm 1
is guaranteed to stop and the convergence depends on the
regret of Online-algorithm. (Proof in Appendix B.)

3.2. Our Main Algorithm

We now focus on a specific instantiation of Algorithm 1.
Algorithm 2 is our main algorithm in this paper.

Policy Learning. We instantiate Best-response with
Fitted Q Iteration (FQI), a model-free off-policy learning
approach (Ernst et al., 2005). FQI relies on a series of
reductions to supervised learning. The key idea is to ap-
proximate the true action-value function Q∗ by a sequence
{Qk ∈ F}Kk=0, where F is a chosen function class.

In Lines 3 & 9, FQI(c+ λ>g) is defined as follows. With
Q0 randomly initialized, for each k = 1, . . . ,K, we form a
new training dataset D̃k = {(xi, ai), yi}ni=1 where:

∀i : yi = (ci + λ>gi) + γmin
a
Qk−1(x′i, a),

and (xi, ai, x
′
i, ci, gi) ∼ D (original dataset). A supervised

regression procedure is called to solve for:

Qk = arg min
f∈F

1

n

n∑
i=1

(f(xi, ai)− yi)2.

The policy then: πK = arg minaQK(·, a).

FQI has been shown to work well with several empirical
domains: spoken dialogue systems (Pietquin et al., 2011),
physical robotic soccer (Riedmiller et al., 2009), and cart-

Algorithm 3 Fitted Off-Policy Evaluation with Function
Approximation: FQE(π, c)

Input: Dataset D = {xi, ai, x′i, ci}ni=1 ∼ πD. Function class F.
Policy π to be evaluated

1: Initialize Q0 ∈ F randomly
2: for k = 1, 2, . . . ,K do
3: Compute target yi = ci + γQk−1(x

′
i, π(x

′
i)) ∀i

4: Build training set D̃k = {(xi, ai), yi}ni=1

5: Solve a supervised learning problem:
Qk = argmin

f∈F

1
n

∑n
i=1(f(xi, ai)− yi)

2

Output: Ĉπ(x) = QK(x, π(x)) ∀x

pole swing-up (Riedmiller, 2005). Another possible model-
free subroutine is Least-Squares Policy Iteration (LSPI)
(Lagoudakis & Parr, 2003). One can also consider model-
based alternatives (Ormoneit & Sen, 2002).

Off-policy Policy Evaluation. A crucial difference be-
tween constrained policy learning and existing work on
constrained supervised learning is the technical challenge
of evaluating the objective and constraints. First, esti-
mating L̂(π, λ) (Lines 11-12) requires estimating Ĉ(π)

and Ĝ(π). Second, any gradient-based approach to
Online-learning requires passing in Ĝ(π)− τ as part
of gradient estimate (line 15). This problem is known as
the off-policy policy evaluation (OPE) problem: we need to
evaluate Ĉ(π) and Ĝ(π) having only access to data D ∼ πD

There are three main contemporary approaches to OPE:
(i) importance weighting (IS) (Precup et al., 2000; 2001),
which is unbiased but often has high-variance; (ii)
regression-based direct methods (DM), which are typically
model based (Thomas & Brunskill, 2016),2 and can be bi-
ased but have much lower variance than IS; and (iii) doubly-
robust techniques (Jiang & Li, 2016; Dudı́k et al., 2011),
which combine IS and DM.

We propose a new and simple model-free technique using
function approximation, called Fitted Q Evaluation (FQE).
FQE is based on an iterative reductions scheme similar to
FQI, but for the problem of off-policy evaluation. Algorithm
3 lays out the steps. The key difference with FQI is that
the min operator is replaced by Qk−1(x′i, π(x′i)) (Line 3 of
Algorithm 3). Each x′i comes from the original D. Since we
know π(x′i), each D̃k is well-defined. Note that FQE can be
plugged-in as a direct method if one wishes to augment the
policy evaluation with a doubly-robust technique.

Online Learning Subroutine. As L(πt, λ) is linear in λ,
many online convex optimization approaches can be used
for Online-algorithm. Perhaps the simpliest choice
is Online Gradient Descent (OGD) (Zinkevich, 2003). We
include an instantiation using OGD in Appendix G.

2I.e., using regression to learn the reward function and transi-
tion dynamics model, before solving the estimated MDP.
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For our main Algorithm 2, similar to (Agarwal et al., 2018),
we use Exponentiated Gradient (EG) (Kivinen & Warmuth,
1997), which has a regret bound of O(

√
log(m)T ) instead

of O(
√
mT ) as in OGD. One can view EG as a variant of

Online Mirror Descent (Nemirovsky & Yudin, 1983) with a
softmax link function, or of Follow-the-Regularized-Leader
with entropy regularization (Shalev-Shwartz et al., 2012).
Gradient-based algorithms generally require bounded λ. We
thus force ‖λ‖1 ≤ B using hyperparameter B. Solving
(OPT) exactly requires B =∞. We will analyze Algorithm
2 with respect to finite B. With some abuse of notation, we
augment λ into a (m+1)−dimensional vector by appending
B − ‖λ‖1, and augment the constraint cost vector g by
appending 0 (Lines 11, 12 & 15 of Algorithm 2).3

4. Theoretical Analysis
4.1. Convergence Guarantee

The convergence rate of Algorithm 2 depends on the radius
B of the dual variables λ, the maximal constraint value G,
and the number of constraints m. In particular, we can show
O(B

2

ω2 ) convergence for primal-dual gap ω.

Theorem 4.1 (Convergence of Algorithm 2). After T itera-
tions, the empirical duality gap is bounded by

L̂max − L̂min ≤ 2
B log(m+ 1)

ηT
+ 2ηBG2

Consequently, to achieve the primal-dual gap of ω, setting
η = ω

4G2B
will ensure that Algorithm 2 converges after

16B2G2 log(m+1)
ω2 iterations. (Proof in Appendix B.)

Convergence analysis of our main Algorithm 2 is an exten-
sion of the proof to Proposition 3.1, leveraging the no-regret
property of the EG procedure (Shalev-Shwartz et al., 2012).

4.2. Generalization Guarantee of FQE and FQI

In this section, we provide sample complexity analysis
for FQE and FQI as standalone procedures for off-policy
evaluation and off-policy learning. We use the notion of
pseudo-dimension as capacity measure of non-linear func-
tion class F (Friedman et al., 2001). Pseudo-dimension
dimF, which naturally extends VC dimension into the re-
gression setting, is defined as the VC dimension of the
function class induced by the sub-level set of functions of F:
dimF = VC-dim({(x, y) 7→ sign(f(x) − y) : f ∈ F}).
Pseudo-dimension is finite for a large class of function ap-
proximators. For example, Bartlett et al. (2017) bounded the
pseudo-dimension of piece-wise linear deep neural networks
(e.g., with ReLU activations) as O(WL logW ), where W
is the number of weights, and L is the number of layers.

3The (m+ 1)th coordinate of g is thus always satisfied. This
augmentation is only necessary when executing EG.

Both FQI and FQE rely on reductions to supervised learning
to update the value functions. In both cases, the learned
policy and evaluation policy induces a different state-action
distribution compared to the data generating distribution µ.
We use the notion of concentration coefficient for the worst
case, proposed by (Munos, 2003), to measure the degree of
distribution shift. The following standard assumption from
analysis of related ADP algorithms limits the severity of
distribution shift over future time steps:

Assumption 1 (Concentration coefficient of future state-ac-
tion distribution). (Munos, 2003; 2007; Munos &
Szepesvári, 2008; Antos et al., 2008a;b; Lazaric et al., 2010;
2012; Farahmand et al., 2009; Maillard et al., 2010)
Let Pπ be the operator acting on f : X × A 7→ R s.t.
(Pπf)(x, a) =

∫
X
f(x′, π(x′))p(dx′|x, a). Given data gen-

erating distribution µ, initial state distribution χ, for m ≥ 0
and an arbitrary sequence of stationary policies {πm}m≥1

define the concentration coeffient:

βµ(m) = sup
π1,...,πm

∥∥∥∥d(χPπ1Pπ2 . . . Pπm)

dµ

∥∥∥∥
∞

We assume βµ = (1− γ)2
∑
m≥1

mγm−1βµ(m) <∞.

This assumption is valid for a fairly large class of MDPs
(Munos, 2007). For instance βµ is finite for any finite MDP,
or any infinite state-space MDP with bounded transition
density.4 Having a finite concentration coefficient is equiva-
lent the top-Lyapunov exponent Γ ≤ 0 (Bougerol & Picard,
1992), which means the underlying stochastic system is
stable. We show below a simple sufficient condition for
Assumption 1 (albeit stronger than necessary).

Example 4.1. Consider an MDP such that for any non-
stationary distribution ρ, the marginals over states satisfy
ρx(x)
µx(x) ≤ L (i.e., transition dynamics are sufficiently stochas-
tic), and ∃M : ∀x, a : µ(a|x) > 1

M (i.e., the behavior
policy is sufficiently exploratory). Then βµ ≤ LM .

Recall that for a given policy π, the Bellman (evalua-
tion) operator is defined as (TπQ)(x, a) = r(x, a) +
γ
∫

X
Q(x′, π(x′))p(dx′|x, a). In general Tπf may not be-

long to F for f ∈ F. For FQE (and FQI), the main operation
in the algorithm is to iteratively project TπQk−1 back to F
via Qk = arg minf∈F ‖f − TπQk−1‖. The performance
of both FQE and FQI thus depend on how well the function
class F approximates the Bellman operator. We measure
the ability of function class F to approximate the Bellman
evaluation operator via the worst-case Bellman error:

4This assumption ensures sufficient data diversity, even when
the executing policy is deterministic. An example of how learning
can fail without this assumption is based on the “combination lock”
MDP (Koenig & Simmons, 1996). In this deterministic MDP
example, βµ can grow arbitrarily large, and we need an exponential
number of samples for both FQE and FQI. See Appendix D.
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Definition 4.1 (inherent Bellman evaluation error). Given
a function class F and policy π, the inherent Bell-
man evaluation error of F is defined as dπF =
supg∈F inff∈F ‖f − Tπg‖π where ‖·‖π is the `2 norm
weighted by the state-action distribution induced by π.

We are now ready to state the generalization bound for FQE:
Theorem 4.2 (Generalization error of FQE). Under As-
sumption 1, for ε > 0 & δ ∈ (0, 1), after K iterations of
Fitted Q Evaluation (Algorithm 3), for n = O

(
C4

ε2 (log K
δ +

dimF log C2

ε2 +log dimF)
)
, we have with probability 1−δ:∣∣C(π)− Ĉ(π)

∣∣ ≤ γ1/2

(1− γ)3/2
(√

βµ (2d
π
F + ε) +

2γK/2C

(1− γ)1/2
)
.

This result shows a dependency on ε of Õ( 1
ε2 ), compared

to Õ( 1
ε4 ) from other related ADP algorithms (Munos &

Szepesvári, 2008; Antos et al., 2008b). The price that we pay
is a multiplicative constant 2 in front of the inherent error dπF.
The error from second term on RHS decays exponentially
with iterations K. The proof is in Appendix E.

We can show an analogous generalization bound for FQI.
While FQI has been widely used, to the best of our knowl-
edge, a complete analysis of FQI for non-linear function
approximation has not been previously reported.5

Definition 4.2 (inherent Bellman optimality error). (Munos
& Szepesvári, 2008) Recall that the Bellman optimal-
ity operator is defined as (TQ)(x, a) = r(x, a) +
γ
∫

X
mina′∈AQ(x′, a′)p(dx′|x, a). Given a function class

F, the inherent Bellman error is defined as dF =
supg∈F inff∈F ‖f − Tg‖µ, where ‖·‖µ is the `2 norm
weighted by µ, the state-action distribution induced by πD.
Theorem 4.3 (Generalization error of FQI). Under Assump-
tion 1, for ε > 0 & δ ∈ (0, 1), after K iterations of Fit-
ted Q Iteration, for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 +

log dimF)
)
, we have with probability 1− δ:∣∣C∗ − C(πK)
∣∣ ≤ 2γ

(1− γ)3

(√
βµ (2dF + ε) + 2γK/2C

)
where πK is the policy acting greedy with respect to the
returned function QK . (Proof in Appendix F.)

4.3. End-to-End Generalization Guarantee

We are ultimately interested in the test-time performance
and constraint satisfaction of the returned policy from Al-
gorithm 2. We now connect the previous analyses from
Theorems 4.1, 4.2 & 4.3 into an end-to-end error analysis.

Since Algorithm 2 uses FQI and FQE as subroutines, the
inherent Bellman error terms dF and dπF will enter our over-

5FQI for continuous action space from (Antos et al., 2008a)
is a variant of fitted policy iteration and not the version of FQI
under consideration. The appendix of (Lazaric & Restelli, 2011)
contains a proof of FQI but for linear functions.

all performance bound. Estimating the inherent Bellman
error caused by function approximation is not possible in
general (chapter 11 of Sutton & Barto (2018)). Fortunately,
a sufficiently expressive F can generally make dF and dπF to
arbitrarily small. To simplify our end-to-end analysis, we
assume dF = 0 and dπF = 0, i.e., the function class F is
closed under applying the Bellman operator.6

Assumption 2. We consider function classes F sufficiently
rich so that ∀f : Tf ∈ F & Tπf ∈ F for the policies π
returned by Algorithm 2.

With Assumptions 1 & 2, we have the following error bound:

Theorem 4.4 (Generalization guarantee of Algorithm 2).
Let π∗ be the optimal policy to (OPT). Denote V = C+BG.
Let K be the number of iterations of FQE and FQI. Let
π̂ be the policy returned by Algorithm 2, with termina-
tion threshold ω. For ε > 0 & δ ∈ (0, 1), when n =

O
(
V 4

ε2 (log K(m+1)
δ +dimF log V 2

ε2 + log dimF)
)
, we have

with probability at least 1− δ:

C(π̂) ≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
βµε+ 2γK/2V

)
,

and

G(π̂) ≤ τ + 2
V + ω

B
+

γ1/2

(1− γ)3/2

(√
βµε+

2γK/2V

(1− γ)1/2

)
.

The proof is in Appendix C. This result guarantees that,
upon termination of Algorithm 2, the true performance on
the main objective can be arbitrarily close to that of the
optimal policy. At the same time, each constraint will be
approximately satisfied with high probability, assuming suf-
ficiently large B & K, and sufficiently small ε.

5. Empirical Analysis
We perform experiments on two different domains: a grid-
world domain (from OpenAI’s FrozenLake) under a safety
constraint, and a challenging high-dimensional car racing
domain (from OpenAI’s CarRacing) under multiple behav-
ior constraints. We seek to answer the following questions
in our experiments: (i) whether the empirical convergence
behavior of Algorithm 2 is consistent with our theory; and
(ii) how the returned policy performs with respect to the
main objective and constraint satisfaction. Appendix H
includes a more detailed discussion of our experiments.

5.1. Frozen Lake.

Environment & Data Collection. The environment is an
8x8 grid. The agent has 4 actions N,S,E,W at each state.
The main goal is to navigate from a starting position to
the goal. Each episode terminates when the agent reaches

6A similar assumption was made in Cheng et al. (2019) on
near-realizability of learning the model dynamics.



Batch Policy Learning under Constraints

the goal or falls into a hole. The main cost function is
defined as c = −1 if goal is reached, otherwise c = 0
everywhere. We simulate a non-optimal data gathering
policy πD by adding random sub-optimal actions to the
shortest path policy from any given state to goal. We run
πD for 5000 trajectories to collect the behavior dataset D
(with constraint cost measurement specified below).

Counterfactual Safety Constraint. We augment the main
objective c with safety constraint cost defined as g = 1
if the agent steps into a hole, and g = 0 otherwise. We
set the constraint threshold τ = 0.1, roughly 75% of the
accumulated constraint cost of behavior policy πD. The
threshold can be interpreted as a counterfactually acceptable
probability that we allow the learned policy to fail.

Results. The empirical primal dual gap L̂max − L̂min in
Figure 1 (left) quickly decreases toward the optimal gap
of zero. The convergence is fast and monotonic, support-
ing the predicted behavior from our theory. The test-time
performance in Figure 1 (middle) shows the safety con-
straint is always satisfied, while the main objective cost also
smoothly converges to the optimal value achieved by an
online RL baseline (DQN) trained without regard to the
constraint. The returned policy significantly outperformed
the data gathering policy πD on both main and safety cost.

5.2. Car Racing.

Environment & Data Collection. The car racing environ-
ment, seen in Figure 3 (right), is a high-dimensional domain
where the state is a 96×96×3 tensor of raw pixels. The ac-
tion space A = {steering×gas×brake} takes 12 discretized
values. The goal in this episodic task is to traverse over 95%
of the track, measured by a given number of “tiles” as a
proxy for distance coverage. The agent receives a reward
(negative cost) for each unique tile crossed and no reward if
the agent is off-track. A small positive cost applies at every
time step, with maximum horizon of 1000 for each episode.
With these costs given by the environment, one can train
online RL agent using DDQN (Van Hasselt et al., 2016). We
collect ≈ 1500 trajectories from DDQN’s randomization,
resulting in data set D with ≈ 94000 transition tuples.

Fast Driving under Behavioral Constraints. We study
the problem of minimizing environment cost while subject
to two behavioral constraints: smooth driving and lane cen-
tering. The first constraint G0 approximates smooth driving
by g0(x, a) = 1 if a contains braking action, and 0 other-
wise. The second constraint cost g1 measures the distance
between the agent and center of lane at each time step. This
is a highly challenging setup since three objectives and con-
straints are in direct conflict with one another, e.g., fast
driving encourages the agent to cut corners and apply fre-
quent brakes to make turns. Outside of this work, we are not
aware of previous work in policy learning with 2 or more

constraints in high-dimensional settings.

Baseline and Procedure. As a naı̈ve baseline, DDQN
achieves low cost, but exhibits “non-smooth” driving behav-
ior (see our supplementary videos). We set the threshold for
each constraint to 75% of the DDQN benchmark. We also
compare against regularized batch RL algorithms (Farah-
mand et al., 2009), specifically regularized LSPI. We in-
stantiate our subroutines, FQE and FQI, with multi-layered
CNNs. We augment LSPI’s linear policy with non-linear
features derived from a well-performing FQI model.

Results. The returned mixture policy from our algorithm
achieves low main objective cost, comparable with online
RL policy trained without regard to constraints. After sev-
eral initial iterations violating the braking constraint, the
returned policy - corresponding to the appropriate λ trade-
off - satisties both constraints, while improving the main
objective. The improvement over data gathering policy is
significant for both constraints and main objective.

Regularized policy learning is an alternative approach to
(OPT) (section 2). We provide the regularized LSPI base-
line the same set of λ found by our algorithm for one-shot
regularized learning (Figures 2 (left & middle)). While
regularized LSPI obtains good performance for the main ob-
jective, it does not achieve acceptable constraint satisfaction.
By default, regularized policy learning requires parameter
tuning heuristics. In principle, one can perform a grid-search
over a range of parameters to find the right combination - we
include such an example for both regularized LSPI and FQI
in Appendix H. However, since our objective and constraints
are in conflict, main objective and constraint satisfaction
of policies returned by one-shot regularized learning are
sensitive to step changes in λ. In constrast, our approach is
systematic, and is able to avoid the curse-of-dimensionality
of brute-force search that comes with multiple constraints.

In practice, one may wish to deterministically extract a
single policy from the returned mixture for execution. A
de-randomized policy can be obtained naturally from our
algorithm by selecting the best policy from the existing
FQE’s estimates of individual Best-response policies.

5.3. Off-Policy Evaluation

The off-policy evaluation by FQE is critical for updating
policies in our algorithm, and is ultimately responsible for
certifying constraint satisfaction. While other OPE meth-
ods can also be used in place of FQE, we find that the
estimates from popular methods are not sufficiently accu-
rate in a high-dimensional setting. As a standalone com-
parison, we select an individual policy and compare FQE
against PDIS (Precup et al., 2000), DR (Jiang & Li, 2016)
and WDR (Thomas & Brunskill, 2016) with respect to the
constraint cost evaluation. To compare both accuracy and
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Figure 1. FrozenLake Results. (Left) Empirical duality gap of algorithm 2 vs. optimal gap. (Middle) Comparison of returned policy and
others w.r.t. (top) main objective value and (bottom) safety constraint value. (Right) FQE vs. other OPE methods on a standalone basis.

Figure 2. CarRacing Results. (Left) & (Middle) (Lower is better) Comparing our algorithm, regularized LSPI, online RL w/o constraints,
behavior policy πD w.r.t. main cost objectives and two constraints. (Right) FQE vs. other OPE methods on a standalone basis.

data-efficiency, for each domain we randomly sample dif-
ferent subsets of dataset D (from 10% to 100% transitions,
30 trials each). Figure 1 (right) and 2 (right) illustrate the
difference in quality. In the FrozenLake domain, FQE per-
forms competitively with the top baseline method (DR and
WDR), converging to the true value estimate as the data
subsample grows close to 100%. In the high-dimensional
car domain, FQE signficantly outperforms other methods.

6. Other Related Work
Constrained MDP (CMDP). The CMDP is a well-studied
problem (Altman, 1999). Among the most important tech-
niques for solving CMDP are the Lagrangian approach and
solving the dual LP program via occupation measure. How-
ever, these approaches only work when the MDP is com-
pletely specified, and the state dimension is small such
that solving via an LP is tractable. More recently, the con-
strained policy optimization approach (CPO) by (Achiam
et al., 2017) learns a policy when the model is not initially
known. The focus of CPO is on online safe exploration, and
thus is not directly comparable to our setting.

Multi-objective Reinforcement Learning. Another
related area is multi-objective reinforcement learning
(MORL)(Van Moffaert & Nowé, 2014; Roijers et al., 2013).
Generally, research in MORL has largely focused on approx-
imating the Pareto frontier that trades-off competing objec-
tives (Van Moffaert & Nowé, 2014; Roijers et al., 2013).

The underlying approach to MORL frequently relies on lin-
ear or non-linear scalarization of rewards to heuristically
turns the problem into a standard RL problem. Our pro-
posed approach represents another systematic paradigm to
solve MORL, whether in batch or online settings.

7. Discussion
We have presented a systematic approach for batch policy
learning under multiple constraints. Our problem formula-
tion can accommodate general definition of constraints, as
partly illustrated by our experiments. We provide guarantees
for our algorithm for both the main objective and constraint
satisfaction. Our strong empirical results show a promise
of making constrained batch policy learning applicable for
real-world domains, where behavior data is abundant.

Our implementation complies with the steps laid out in Al-
gorithm 2. In very large scale or high-dimensional problems,
one could consider a noisy update version for both policy
learning and evaluation. We leave the theorerical and practi-
cal exploration of this extension to future work. In addition,
our proposed FQE algorithm for OPE problem achieves
strong results, especially in a difficult domain with long
horizons. Comparing the bias-variance characteristics of
FQE with contemporary OPE methods is another interesting
direction for research.
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A. Equivalence between Regularization and Constraint Satisfaction
A.1. Formulating Different Regularized Policy Learning Problems as Constrained Policy Learning

In this section, we provide connections between regularized policy learning and our constrained formulation (OPT).
Although the main paper focuses on batch policy learning, here we are agnostic between online and batch learning settings.

Entropy regularized RL. The standard reinforcement learning objective, either in online or batch setting, is to
find a policy π∗std that minimizes the long-term cost (equivalent to maximizing the accumuted rewards): π∗std =
arg minπ

∑
t E(xt,at)∼π[c(xt, at)] = arg minπ E(x,a)∼µπ [c(x, a)]. Maximum entropy reinforcement learning (Haarnoja

et al., 2017) augments the cost with an entropy term, such that the optimal policy maximizes its entropy at each visited
state: π∗MaxEnt = arg minπ E(x,a)∼µπ [c(x, a)] − λH(π(·|x)). As discuseed by (Haarnoja et al., 2017), the goal is for the
agent to maximize the entropy of the entire trajectory, and not greedily maximizing entropy at the current time step (i.e.,
Boltzmann exploration). Maximum entropy policy learning was first proposed by (Ziebart et al., 2008; Ziebart, 2010) in the
context of learning from expert demonstrations. Entropy regulazed RL/IL is equivalent to our problem (OPT) by simply set
C(π) = E(xt,at)∼π[c(xt, at)] (standard RL objective), and g(x, a) = π(a|x) log π(a|x), thus G(π) = −H(π) ≤ τ

Smooth imitation learning (& Regularized imitation learning). This is a constrained imitation learning problem studied
by (Le et al., 2016): learning to mimic smooth behavior in continuous space from human desmonstrations. The data collected
from human demonstrations is considered to be fixed and given a priori, thus the imitation learning task is also a batch
policy learning problem. The proposed approach from (Le et al., 2016) is to view policy learning as a function regularization
problem: policy π = (f, g) is a combination of functions f and h, where f belongs to some expressive function class F
(e.g., decision trees, neural networks) and h ∈ H with certifiable smoothness property (e.g., linear models). Policy learning
is the solution to the functional regularization problem π = arg minf,g Ex∼µπ ‖f(x)− πE(x)‖ + λ ‖h(x)− πE(x)‖,
where πE is the expert policy. This constrained imitation learning setting is equivalent to our problem (OPT) as follows:
C(π) = C((f, h)) = Ex∼µπ ‖f(x)− πE(x)‖ and G(π) = G((f, h)) = minh′∈H ‖h′(x)− πE(x)‖ ≤ τ

Regularizing RL with expert demonstrations / Learning from imperfect demonstrations. Efficient exploration in RL
is a well-known challenge. Expert demonstrations provide a way around online exploration to reduce the sample complexity
for learning. However, the label budget for expert demonstrations may be limited, resulting in a sparse coverage of the state
space compared to what the online RL agent can explore (Hester et al., 2018). Additionally, expert demonstrations may be
imperfect (Oh et al., 2018). Some recent work proposed to regularize standard RL objective with some deviation measure
between the learning policy and (sparse) expert data (Hester et al., 2018; Oh et al., 2018; Henaff et al., 2019).

For clarity we focus on the regularized RL objective for Q-learning in (Hester et al., 2018), which is defined as J(π) =
JDQ(Q)+λ1Jn(Q)+λ2JE(Q)+λ3JL2(Q), where JDQ(Q) is the standard deep Q-learning loss, Jn(Q) is the n-step return
loss, JE(Q) is the imitation learning loss defined as JE(Q) = maxa∈A [Q(x, a) + `(aE , a)−Q(x, aE)], and JL2(Q) is an
L2 regularization loss applied to the Q-network to prevent overfitting to a small expert dataset. The regularization parameters
λ’s are obtained by hyperparameter tuning. This approach provides a bridge between RL and IL, whose objective functions
are fundamentally different (see AggreVate by (Ross & Bagnell, 2014) for an alternative approach).

We can cast this problem into (OPT) as: C(π) = CDQ(Q) + λ3CL2(Q) (standard RL objective), and two constraints:
g1(π) = Ex∼µπ [maxa∈AQ(x, a) + `(aE , a) − Q(x, aE)], and g2(x, a) = Ex∼µπ [ct + γct+1 + . . . + γn−1ct+n−1 +
min′a γ

nQ(xt+n, a
′)−Q(xt, a)]. Here g1 captures the loss w.r.t. expert demonstrations and g2 reflects the n-step return

constraint.

More generally, one can define the imitation learning constraint as G(π) = Ex∼µπ`(π(x), πE(x)) for an appropriate
divergence definition between π(x) and πE(x) (defined at states where expert demonstrations are available).

Conservative policy improvement. Many policy search algorithms perform small policy update steps, requiring the new
policy π to stay within a neighborhood of the most recent policy iterate πk to ensure learning stability (Levine & Abbeel,
2014; Schulman et al., 2015; Montgomery & Levine, 2016; Achiam et al., 2017). This simply corresponds to the definition
of G(π) = distance(π, πk) ≤ τ , where distance is typically KL-divergence or total variation distance between the
distribution induced by π and πk. For KL-divergence, the single timestep cost g(x, a) = −π(a|x) log(πk(a|x)

π(a|x) )
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A.2. Equivalence of Regularization and Constraint Viewpoint - Proof of Proposition 2.1

Regularization =⇒ Constraint: Let λ > 0 and π∗ be optimal policy in Regularization. Set τ = G(π∗).
Suppose that π∗ is not optimal in Constraint. Then ∃π ∈ Π such that G(π) ≤ τ and C(π) < C(π∗). We then have

C(π) + λ>G(π) < C(π∗) + λ>τ = C(π∗) + λ>G(π∗)

which contradicts the optimality of π∗ for Regularization problem. Thus π∗ is also the optimal solution of the
Constraint problem.

Constraint =⇒ Regularization: Given τ and let π∗ be the corresponding optimal solution of the Constraint
problem. The Lagrangian of Constraint is given by L(π, λ) = C(π) + λ>G(π), λ ≥ 0. We then have π∗ =
arg min
π∈Π

max
λ≥0

L(π, λ). Let

λ∗ = arg max
λ≥0

min
π∈Π

L(π, λ)

Slater’s condition implies strong duality. By strong duality and the strong max-min property (Boyd & Vandenberghe, 2004),
we can exchange the order of maximization and minimization. Thus π∗ is the optimal solution of

min
π∈Π

C(π) + (λ∗)>(G(π)− τ)

Removing the constaint (λ∗)>τ , we have that π∗ is the optimal solution of the Regularization problem with λ = λ∗.
And since π∗ 6= arg min

π∈Π
C(π), we must have λ∗ ≥ 0.
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B. Convergence Proofs
B.1. Convergence of Meta-algorithm - Proof of Proposition 3.1

Let us evaluate the empirical primal-dual gap of the Lagrangian after T iterations:

max
λ

L(π̂T , λ) = max
λ

1

T

∑
t

L(πt, λ) (1)

≤ 1

T

∑
t

L(πt, λt) +
o(T )

T
(2)

≤ 1

T

∑
t

L(π, λt) +
o(T )

T
∀π ∈ Π (3)

= L(π, λ̂T ) +
o(T )

T
∀π (4)

Equations (1) and (4) are due to the definition of π̂T and λ̂T and linearity of L(π, λ) wrt λ and the distribution over policies
in Π. Equation (2) is due to the no-regret property of Online-algorithm. Equation (3) is true since πt is best response
wrt λt. Since equation (4) holds for all π, we can conclude that for T sufficiently large such that o(T )

T ≤ ω, we have
maxλ L(π̂T , λ) ≤ minπ L(π, λ̂T ) + ω , which will terminate the algorithm.

Note that we always have maxλ L(π̂T , λ) ≥ L(π̂T , λ̂T ) ≥ minπ L(π, λ̂T ). Algorithm 1’s convergence rate depends on the
regret bound of the Online-algorithm procedure. Multiple algorithms exist with regret scaling as Ω(

√
T ) (e.g., online

gradient descent with regularizer, variants of online mirror descent). In that case, the algorithm will terminate after O( 1
ω2 )

iterations.

B.2. Empirical Convergence Analysis of Main Algorithm - Proof of Theorem 4.1

By choosing normalized exponentiated gradient as the online learning subroutine, we have the following regret bound after
T iterations of the main algorithm 2 (chapter 2 of (Shalev-Shwartz et al., 2012)) for any λ ∈ Rm+1

+ , ‖λ‖1 = B:

1

T

T∑
t=1

L̂(πt, λ) ≤ 1

T

T∑
t=1

L̂(πt, λt) +

B log(m+1)
η + ηG2BT

T
(5)

Denote ωT =
B log(m+1)

η +ηG2BT

T to simplify notations. By the linearity of L̂(π, λ) in both π and λ, we have for any λ that

L̂(π̂T , λ)
linearity

=
1

T

T∑
t=1

L̂(πt, λ)
eqn (5)

≤ 1

T

T∑
t=1

L̂(πt, λt) + ωT
best response πt
≤ 1

T

T∑
t=1

L̂(π̂T , λt) + ωT
linearity

= L̂(π̂T , λ̂T ) + ωT

Since this is true for any λ, maxλ L̂(π̂T , λ) ≤ L̂(π̂T , λ̂T ) + ωT .

On the other hand, for any policy π, we also have

L̂(π, λ̂T )
linearity

=
1

T

T∑
t=1

L̂(π, λt)
best response πt
≥ 1

T

T∑
t=1

L̂(πt, λt)
eqn (5)

≥ 1

T

T∑
t=1

L̂(πt, λ̂T )− ωT
linearity

= L̂(π̂T , λ̂T )− ωT

Thus minπ L̂(π, λ̂T ) ≥ L̂(π̂T , λ̂T )− ωT , leading to

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T ) ≤ L̂(π̂T , λ̂T ) + ωT − (L̂(π̂T , λ̂T )− ωT ) = 2ωT

After T iterations of the main algorithm 2, therefore, the empirical primal-dual gap is bounded by

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T ) ≤

2B log(m+1)
η + 2ηG2BT

T
In particular, if we want the gap to fall below a desired threshold ω, setting the online learning rate η = ω

4G2B
will ensure

that the algorithm converges after 16B2G2 log(m+1)
ω2 iterations.
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C. End-to-end Generalization Analysis of Main Algorithm
In this section, we prove the following full statement of theorem 4.4 of the main paper. Note that to lessen notation, we
define V = C +BG to be the bound of value functions under considerations in algorithm 2.
Theorem C.1 (Generalization bound of algorithm 2). Let π∗ be the optimal policy to problem OPT. Let K be the number
of iterations of FQE and FQI. Let π̂ be the policy returned by our main algorithm 2, with termination threshold ω. For any
ε > 0, δ ∈ (0, 1), when n ≥ 24·214·V 4

ε2

(
log K(m+1)

δ + dimF log 320V 2

ε2 + log(14e(dimF + 1))
)
, we have with probability

at least 1− δ:

C(π̂) ≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
Cρε+ 2γK/2V

)
and

G(π̂) ≤ τ + 2
V + ω

B
+

γ1/2

(1− γ)3/2

(√
Cρε+

2γK/2V

(1− γ)1/2

)
Let π̂ = 1

T

∑
t πt be the returned policy T iterations, with corresponding dual variable λ̂ = 1

T

∑
t λt.

By the stopping condition, the empirical duality gap is less than some threshold ω, i.e., max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ) −

min
π∈Π

L̂(π, λ̂) ≤ ω where L̂(π, λ) = Ĉ(π) + λ>(Ĝ(π) − τ). We first show that the returned policy approximately

satisfies the constraints. The proof of theorem C.1 will make use of the following empirical constraint satisfaction bound:
Lemma C.2 (Empirical constraint satisfactions). Assume that the constraints Ĝ(π) ≤ τ are feasible. Then the returned
policy π̂ approximately satisfies all constraints

max
i=1:m+1

(ĝi(π̂)− τi) ≤ 2
C + ω

B

Proof. We consider max
i=1:m+1

(ĝi(π̂)− τi) > 0 (otherwise the lemma statement is trivially true). The termination condition

implies that L̂(π̂, λ̂)− max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ) ≥ −ω

=⇒ λ̂>(Ĝ(π̂)− τ̂) ≥ max
λ∈Rm+1

+ ,‖λ‖1=B
λ>(Ĝ(π̂)− τ̂)− ω (6)

Relaxing the RHS of equation (6) by setting λ[j] = B for j = arg max
i=1:m+1

[ĝi(π̂)− τi] and λ[i] = 0 ∀i 6= j yields:

B max
i=1:m+1

[ĝi(π̂)− τi]− ω ≤ λ̂>(Ĝ(π̂)− τ) (7)

Given π such that Ĝ(π) ≤ τ , also by the termination condition:

L̂(π̂, λ̂)− L̂(π, λ̂) ≤ max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ)−min

π∈Π
L̂(π, λ̂) ≤ ω

Thus implies

L̂(π̂, λ̂) ≤ L̂(π, λ̂) + ω = Ĉ(π) + λ̂>(Ĝ(π)− τ) ≤ Ĉ(π) + ω (8)
combining what we have from equation (8) and (7):

B max
i=1:m+1

[ĝi(π̂)− τ̂i]− ω ≤ λ̂>(Ĝ(π̂)− τ̂) = L̂(π̂, λ̂)− Ĉ(π̂) ≤ Ĉ(π) + ω − Ĉ(π̂)

Rearranging and bounding Ĉ(π) ≤ C and Ĉ(π̂) ≤ −C finishes the proof of the lemma.

We now return to the proof of theorem C.1, our task is to lift empirical error to generalization bound for main objective and
constraints.

Denote by εFQE the (generalization) error introduced by the Fitted Q Evaluation procedure (algorithm 3) and εFQI the
(generalization) error introduced by the Fitted Q Iteration procedure (algorithm 4). For now we keep εFQE and εFQI
unspecified (to be specified shortly). That is, for each t = 1, 2, . . . , T , we have with probability at least 1− δ:

C(πt) + λ>t (G(πt)− τ) ≤ C(π∗) + λ>t (G(π∗)− τ) + εFQI
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Since π∗ satisfies the constraints, i.e., G(π∗)− τ ≤ 0 componentwise, and λt ≥ 0, we also have with probability 1− δ
L(πt, λt) = C(πt) + λ>t (G(πt)− τ) ≤ C(π∗) + εFQI (9)

Similarly, with probability 1− δ, all of the following inequalities are true
Ĉ(πt) + εFQE ≥ C(πt) ≥ Ĉ(πt)− εFQE (10)

Ĝ(πt) + εFQE1 ≥ G(πt) ≥ Ĝ(πt)− εFQE1 (row wise for all m constraints) (11)
Thus with probability at least 1− δ

L(πt, λt) = C(πt) + λ>t (G(πt)− τ) ≥ Ĉ(πt) + λ>t (Ĝ(πt)− τ)− εFQE(1 + λ>t 1)

≥ Ĉ(πt) + λ>t (Ĝ(πt)− τ)− εFQE(1 +B)

= L̂(πt, λt)− εFQE(1 +B) (12)
Recall that the execution of mixture policy π̂ is done by uniformly sampling one policy πt from {π1, . . . , πT }, and rolling-
out with πt. Thus from equations (9) and (12), we have Et∼U [1:T ]L̂(πt, λt) ≤ C(π∗) + εFQI + (1 +B)εFQE w.p. 1− δ.
In other words, with probability 1− δ:

1

T

T∑
t=1

L̂(πt, λt) ≤ C(π∗) + εFQI + (1 +B)εFQE

Due to the no-regret property of our online algorithm (EG in this case):

1

T

T∑
t=1

L̂(πt, λt) ≥ max
λ

L̂(π̂, λ)− ω = Ĉ(π̂) + max
λ

λ>(Ĝ(π̂)− τ)− ω

If Ĝ(π̂)− τ ≤ 0 componentwise, choose λ[i] = 0, i = 1, 2, . . . ,m and λ[m+ 1] = B. Otherwise, we can choose λ[j] = B

for j = arg max
i=1:m+1

[ĝi(π̂)− τ [i]] and λ[i] = 0 ∀i 6= j. We can see that max
λ∈Rm+1

+ ,‖λ‖1=B
λ>(Ĝ(π̂)− τ) ≥ 0. Therefore:

Ĉ(π̂)− ω ≤ C(π∗) + εFQI + (1 +B)εFQE with probability at least 1− δ
Combined with the first term from equation (10):

C(π̂)− εFQE − ω ≤ C(π∗) + εFQI + (1 +B)εFQE

or
C(π̂) ≤ C(π∗) + ω + εFQI + (2 +B)εFQE (13)

We now bring in the generalization error results from our standalone analysis of FQI (appendix F) and FQE (appendix E)
into equation (13).

Specifically, when n ≥ 24·214·V 4

ε2

(
log K(m+1)

δ + dimF log 320V 2

ε2 + log(14e(dimF + 1))
)

, when FQI and FQE are run
with K iterations, we have the guarantee that for any ε > 0, with probability at least 1− δ

C(π̂) ≤ C(π∗) + ω +
2γ

(1− γ)3

(√
Cµε+ 2γK/2V

)
︸ ︷︷ ︸

FQI generalization error

+
γ1/2(2 +B)

(1− γ)3/2

(√
Cµε+

γK/2

(1− γ)1/2
2V

)
︸ ︷︷ ︸

(2+B)× FQE generalization error

≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
Cµε+ 2γK/2V

)
(14)

From lemma C.2, Ĝ(π̂) ≤ τ + 2C+ω
B ≤ τ + 2V+ω

B . From equation (11), for each t=1,2,. . . ,T, we have Ĝ(πt) ≥
G(πt)− εFQE1 with probability 1− δ. Thus

P
(
Ĝ(π̂) ≥ G(π̂)− εFQE1

)
=

T∑
t=1

P(Ĝ(πt) ≥ G(πt)− εFQE1|π̂ = πt)P(π̂ = πt) ≥ T (1− δ) 1

T
= 1− δ

Therefore, we have the following generalization guarantee for the approximate satisfaction of all constraints:

G(π̂) ≤ τ + 2
V + ω

B
+

γ1/2

(1− γ)3/2

(√
Cµε+

γK/2

(1− γ)1/2
2V

)
(15)

Inequalities (14) and (15) complete the proof of theorem C.1 (and theorem 4.4 of the main paper)
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D. Preliminaries to Analysis of Fitted Q Evaluation (FQE) and Fitted Q Iteration (FQI)
In this section, we set-up necessary notations and definitions for the theoretical analysis of FQE and FQI. To simplify the
presentation, we will focus exclusively on weighted `2 norm for error analysis.

With the definitions and assumptions presented in this section, we will present the sample complexity guarantee of
Fitted-Q-Evaluation (FQE) in appendix E. The proof for FQI will follow similarly in appendix F.

While it is possible to adapt proofs from related algorithms (Munos & Szepesvári, 2008; Antos et al., 2008b) to analyze FQE
and FQI, in the next two sections we show improved convergence rate from O(n−4) to O(n−2), where n is the number of
samples in data set D.

To be consistent with the notations in the main paper, we use the convention C(π) as the value function that denotes
long-term accumulated cost, instead of using V (π) denoting long-term rewards in the traditional RL literature. Our notation
for Q function is similar to the RL literature - the only difference is that the optimal policy minimizes Q(x, a) instead of
maximizing. We denote the bound on the value function as C (alternatively if the single timestep cost is bounded by c, then
C = c

1−γ ). For simplicity, the standalone analysis of FQE and FQI concerns only with the cost objective c. Dealing with
cost c+ λ>g offers no extra difficulty - in that case we simply augment the bound of the value function to V = C +BG.

D.1. Bellman operators

The Bellman optimality operator T : B(X×A;C) 7→ B(X×A;C) as

(TQ)(x, a) = c(x, a) + γ

∫
X

min
a′∈A

Q(x′, a′)p(dx′|x, a) (16)

The optimal value functions are defined as usual by C∗(x) = sup
π
Cπ(x) and Q∗(x, a) = sup

π
Qπ(x, a) ∀x ∈ X, a ∈ A.

For a given policy π, the Bellman evaluation operator Tπ : B(X×A;C) 7→ B(X×A;C) as

(TπQ)(x, a) = c(x, a) + γ

∫
X

Q(x′, π(x′))p(dx′|x, a) (17)

It is well known that TπQπ = Qπ, a fixed point of the Tπ operator.

D.2. Data distribution and weighted `2 norm

Denote the state-action data generating distribution as µ, induced by some data-generating (behavior) policy πD, that is,
(xi, ai) ∼ µ for (xi, ai, x

′
i, ci) ∈ D.

Note that data set D is formed by multiple trajectories generated by πD. For each (xi, ai), we have x′i ∼ p(·|xi, ai)
and ci = c(xi, ai). For any (measurable) function f : X × A 7→ R, define the µ-weighted `2 norm of f as ‖f‖2µ =∫

X×A
f(x, a)2µ(dx, da) =

∫
X×A

f(x, a)2µx(dx)πD(a|dx). Similarly for any other state-action distribution ρ, ‖f‖2ρ =∫
X×A

f(x, a)2ρ(dx, da)

D.3. Inherent Bellman error

FQE and FQI depend on a chosen function class F to approximate Q(x, a). To express how well the Bellman operator Tg
can be approximated by a function in the policy class F, when Tg /∈ F, a notion of distance, known as inherent Bellman
error was first proposed by (Munos, 2003) and used in the analysis of related ADP algorithms (Munos & Szepesvári, 2008;
Munos, 2007; Antos et al., 2008a;b; Lazaric et al., 2010; 2012; Lazaric & Restelli, 2011; Maillard et al., 2010).

Definition D.1 (Inherent Bellman Error). Given a function class F and a chosen distribution ρ, the inherent Bellman error
of F is defined as

dF = d(F,TF) = sup
h∈F

inf
f∈F
‖f − Th‖ρ

where ‖·‖ρ is the ρ−weighted `2 norm and T is the Bellman optimality operator defined in (16)

To analyze FQE, we will form a similar definition for the Bellman evaluation operator

Definition D.2 (Inherent Bellman Evaluation Error). Given a function class F and a policy π, the inherent Bellman
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evaluation error of F is defined as
dπF = d(F,TπF) = sup

h∈F
inf
f∈F
‖f − Tπh‖ρπ

where ‖·‖ρπ is the `2 norm weighted by ρπ . ρπ is defined as the state-action distribution induced by policy π, and Tπ is the
Bellman operator defined in (17)

D.4. Concentration coefficients

Let Pπ denote the operator acting on f : X×A 7→ R such that (Pπf)(x, a) =
∫

X
f(x′, π(x′))p(x′|x, a)dx′. Acting on f

(e.g., approximates Q), Pπ captures the transition dynamics of taking action a and following π thereafters.

The following definition and assumption are standard in the analysis of related approximate dynamic programming algorithms
(Lazaric et al., 2012; Munos & Szepesvári, 2008; Antos et al., 2008a). As approximate value iteration and policy iteration
algorithms perform policy update, the new policy at each round will induce a different stationary state-action distribution.
One way to quantify the distribution shift is the notion of concentrability coefficient of future state-action distribution, a
variant of the notion introduced by (Munos, 2003).

Definition D.3 (Concentration coefficient of state-action distribution). Given data generating distribution µ ∼ πD, initial
state distribution χ. For m ≥ 0, and an arbitrary sequence of stationary policies {πm}m≥1 let

βµ(m) = sup
π1,...,πm

∥∥∥∥d(χPπ1Pπ2 . . . Pπm)

dµ

∥∥∥∥
∞

(βµ(m) = ∞ if the future state distribution χPπ1Pπ2 . . . Pπm is not absolutely continuous w.r.t. µ, i.e,
χPπ1Pπ2 . . . Pπm(x, a) > 0 for some µ(x, a) = 0)

Assumption 3. βµ = (1− γ)2
∑
m≥1

mγm−1βµ(m) <∞

Combination Lock Example. An example of an MDP that violates Assumption 3 is the “combination lock” example
proposed by (Koenig & Simmons, 1996). In this finite MDP, we have N states X = {1, 2, . . . , N}, and 2 actions: going L
or R. The initial state is x0 = 1. In any state x, action L takes agent back to initial state x0, and action R advances the agent
to the next state x+ 1 in a chain fashion. Suppose that the reward is 0 everywhere except for the very last state N . One can
see that for an MDP such that any behavior policy πD that has a bounded from below probability of taking action L from
any state x, i.e., πD(L|x) ≥ ν > 0, then it takes an exponential number of trajectories to learn or evaluate a policy that
always takes action R. In this setting, we can see that the concentration coefficient βµ can be designed to be arbitrarily large.

D.5. Complexity measure of function class F

Definition D.4 (Random L1 Norm Covers). Let ε > 0, let F be a set of functions X 7→ R, let xn1 = (x1, . . . , xn) be n fixed
points in X. Then a collection of functions Fε = {f1, . . . , fN} is an ε-cover of F on xn1 if

∀f ∈ F,∃f ′ ∈ Fε : | 1
n

n∑
i=1

f(xi)−
1

n

n∑
i=1

f ′(xi)| ≤ ε

The empirical covering number, denote by N1(ε,F, xn1 ), is the size of the smallest ε-cover on xn1 . Take N1(ε,F, xn1 ) =∞
if no finite ε-cover exists.

Definition D.5 (Pseudo-Dimension). A real-valued function class F has pseudo-dimension dimF defined as the VC
dimension of the function class induced by the sub-level set of functions of F. In other words, define function class
H = {(x, y) 7→ sign(f(x)− y : f ∈ F}, then

dimF = VC-dimension(H)
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E. Generalization Analysis of Fitted Q Evaluation
In this section we prove the following statement for Fitted Q Evaluation (FQE).
Theorem E.1 (Guarantee for FQE - General Case (theorem 4.2 in main paper)). Under Assumption 3, for ε > 0 & δ ∈ (0, 1),
after K iterations of Fitted Q Evaluation (Algorithm 3), for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with

probability 1− δ: ∣∣C(π)− Ĉ(π)
∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµ (2dπF + ε) +

2γK/2C

(1− γ)1/2

)
.

Theorem E.2 (Guarantee for FQE - Bellman Realizable Case). Under Assumptions 3-4, for any ε > 0, δ ∈ (0, 1), after K
iterations of Fitted Q Evaluation (Algorithm 3), when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)
,

we have with probability 1− δ: ∣∣C(π)− Ĉ(π)
∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµε+

2γK/2C

(1− γ)1/2

)
We first focus on theorem E.2, analyzing FQE assuming a sufficiently rich function class F so that the Bellman evaluation
update Tπ is closed wrt F (thus inherent Bellman evaluation error is 0). We call this the Bellman evaluation realizability
assumption. This assumption simplifies the presentation of our bounds and also simplifies the final error analysis of Algo. 2.

After analyzing FQE under this Bellman realizable setting, we will turn to error bound for general, non-realizable setting in
theorem E.1 (also theorem 4.2 in the main paper). The main difference in the non-realizable setting is the appearance of an
extra term dπF our final bound.

E.1. Error bound for single iteration - Bellman realizable case

Assumption 4 (Bellman evaluation realizability). We consider function classes F sufficiently rich so that ∀f,Tπf ∈ F.

We begin with the following result bounding the error for a single iteration of FQE, under “training” distribution µ ∼ πD
Proposition E.3 (Error bound for single iteration). Let the functions in F also be bounded by C, and let dimF denote the
pseudo-dimension of the function class F. We have with probability at least 1− δ:

‖Qk − TπQk−1‖µ < ε

when n ≥ 24·214·C4

ε2

(
log 1

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

Remark E.4. Note from proposition E.3 that the dependence of sample complexity n here on ε is Õ( 1
ε2 ), which is better than

previously known analysis for Fitted Value Iteration (Munos & Szepesvári, 2008) and FittedPolicyQ (continuous version of
Fitted Q Iteration (Antos et al., 2008a)) dependence of Õ( 1

ε4 ). The finite sample analysis of LSTD (Lazaric et al., 2010)
showed an Õ( 1

ε2 ) dependence using linear function approximation. Here we prove similar convergence rate for general
non-linear (bounded) function approximators.

Proof of Proposition E.3. Recall the training target in round k is yi = ci + γQk−1(x′i, π(x′i)) for i = 1, 2, . . . , n, and
Qk ∈ F is the solution to the following regression problem:

Qk = arg min
f∈F

1

n

n∑
i=1

(f(xi, ai)− yi)2

Consider random variables (x, a) ∼ µ and y = c(x, a) + γQk−1(x′, π(x′)) where x′ ∼ p(·|x, a). By this definition,
TπQk−1 is the regression function that minimizes square loss min

h:RX×A 7→R
E|h(x, a) − y|2 out of all functions h (not

necessarily in F). This is due to (TπQk−1)(x̃, ã) = E [y|x = x̃, a = ã] by definition of the Bellman operator. Consider
Qk−1 fixed and we now want to relate the learned function Qk over finite set of n samples with the regression function over
the whole data distribution via uniform deviation bound. We use the following lemma:
Lemma E.5 ((Györfi et al., 2006), theorem 11.4. Original version (Lee et al., 1996), theorem 3). Consider random vector
(X,Y ) and n i.i.d samples (Xi, Yi). Let m(x) be the (optimal) regression function under square loss m(x) = E[Y |X = x].
Assume |Y | ≤ B a.s. and B ≤ 1. Let F be a set of function f : Rd 7→ R and let |f(x)| ≤ B. Then for each n ≥ 1

P

{
∃f ∈ F : E|f(X)− Y |2 − E|m(X)− Y |2 − 1

n

n∑
i=1

(
|f(Xi)− Yi|2 − |m(Xi)− Yi|2

)
≥
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ε ·
(
α+ β + E|f(X)− Y |2 − E|m(X)− Y |2

)}
≤ 14 sup

xn1

N1

(
βε

20B
,F, xn1

)
exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
where α, β > 0 and 0 < ε < 1/2

To apply this lemma, first note that since TπQk−1 is the optimal regression function7, we have

Eµ
[
(Qk(x, a)− y)2

]
= Eµ

[
(Qk(x, a)− TπQk−1(x, a) + TπQk−1(x, a)− y)

2
]

= Eµ
[
(Qk(x, a)− TπQk−1(x, a))

2
] + Eµ[(TπQk−1(x, a)− y)

2
]

thus
‖Qk − TπQk−1‖2µ = E

[
(Qk(x, a)− TπQk−1(x, a))2

]
= E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
where by definition

E
[
(Qk(x, a)− TπQk−1(x, a))2

]
=

∫
(Qk(x, a)− TπQk−1(x, a))

2
µ(dx, da)

=

∫
(Qk(x, a)− Tπ(x, a))2µx(dx)πD(a|dx)

Next, given a fixed data set D̃k ∼ µ

P
{
‖Qk − TπQk−1‖2µ > ε

}
= P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
> ε

}
≤ P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)
> ε

}
(18)

= P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 1

n

n∑
i=1

[
(Qk(xi, ai)− yi)2 − (TπQk−1(xi, ai)− yi)2

]
>

1

2
(ε+ E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
)

}
(19)

≤ P

{
∃f ∈ F : E

[
(f(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 1

n

n∑
i=1

[
(f(xi, ai)− yi)2 − (TπQk−1(xi, ai)− yi)2

]
≥ 1

2
(
ε

2
+
ε

2
+ E

[
(f(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
)

}
≤ 14 sup

xn1

N1

(
ε

80C
,F, xn1

)
· exp

(
− nε

24 · 214C4

)
(20)

Equation (18) uses the definition of Qk = arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2 and the fact that TπQk−1 ∈ F, thus making

the extra term a positive addition. Equation (19) is due to rearranging the terms. Equation (20) is an application of lemma
E.5. We can further bound the empirical covering number by invoking the following lemma due to Haussler (Haussler,
1995):

Lemma E.6 ((Haussler, 1995), Corollary 3). For any set X , any points x1:n ∈ Xn, any class F of functions on X taking

7It is easy to see that if m(x) = E[y|x] is the regression function then for any function f(x), we have
E [(f(x)−m(x))(m(x)− y) = 0]
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values in [0, C] with pseudo-dimension dimF <∞, and any ε > 0

N1(ε,F, xn1 ) ≤ e(dimF + 1)

(
2eC

ε

)dimF

Applying lemma E.6 to equation (20), we have the inequality

P
{
‖Qk − TπQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
320C2

ε

)dimF

· exp

(
− nε

24 · 214C4

)
(21)

We thus have that when n ≥ 24·214·C4

ε2

(
log 1

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

:

‖Qk − TπQk−1‖ρ < ε

with probability at least 1− δ. Notice that the dependence of sample complexity n here on ε is Õ( 1
ε2 ), which is better than

previously known analyses for other approximate dynamic programming algorithms such as Fitted Value Iteration (Munos
& Szepesvári, 2008), FittedPolicyQ (Antos et al., 2008b;a) with dependence of O( 1

ε4 ).

E.2. Error bound for single iteration - Bellman non-realizable case

We now give similar error bound for the general case, where Assumption 4 does not hold. Consider the decomposition
‖Qk − TπQk−1‖2µ = E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
=

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)}

+

{
2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)}
= component 1 + component 2

Splitting the probability of error into two separate bounds. We saw from the previous section (equation (21)) that

P(component 1 > ε/2) ≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
(22)

We no longer have component 2 ≤ 0 since TπQk−1 /∈ F. Let f∗ = arg inf
f∈F

‖f − TπQk−1‖2µ. Since Qk =

arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2, we can upper-bound component 2 by

component 2 ≤ 2 ·

(
1

n

n∑
i=1

(f∗(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)
We can treat f∗ as a fixed function, unlike random function Qk, and use standard concentration inequalities to bound the
empirical average from the expectation. Let random variable z = ((x, a), y), zi = ((xi, ai), yi), i = 1, . . . , n and let

h(z) = (f∗(x, a)− y)2 − (TπQk−1(x, a)− y)2

We have |h(z)| ≤ 4C2. We will derive a bound for

P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+ Eh(z)

)
using Bernstein inequality(Mohri et al., 2012). First, using the relationship h(z) = (f∗(x, a) + TπQk−1(x, a) −
2y)(f∗(x, a)− TπQk−1(x, a)), the variance of h(z) can be bounded by a constant factor of Eh(z), since

Var(h(z)) ≤ Eh(z)2 ≤ 16C2E
[
(f∗(x, a)− TπQk−1(x, a))2

]
= 16C2

(
E
[
(f∗(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

])
(23)

= 16C2Eh(z) (24)
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Equation (23) stems from TπQk−1 being the optimal regression function. Now we can apply equation (24) and Bernstein
inequality to obtain

P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+ Eh(z)

)
≤ P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+

Var(h(z))

16C2

)
≤ . . .

≤ exp

− n
(
ε
4 + Var

16C2

)2

2Var + 2 4C2

3

(
ε
4 + Var

16C2

)


≤ exp

− n
(
ε
4 + Var

16C2

)2

(
32C2 + 8C2

3

)(
ε
4 + Var

16C2

)
 = exp

−n
(
ε
4 + Var

16C2

)
32C2 + 8C2

3

 ≤ exp

(
− 1

128 + 32
3

· nε
C2

)

Thus

P

(
2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
>
ε

2

)
≤ exp

(
− 3

416
· nε
C2

)
(25)

Now we have

component 2 ≤ 2 · 1

n

n∑
i=1

h(zi) = 2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
+ 4Eh(z)

Using again the fact that TπQk−1 is the optimal regression function
Eh(z) = ED

[
(f∗(x, a)− y)2

]
− ED

[
(TπQk−1(x, a)− y)2

]
= ED

[
(f∗(x, a)− TπQk−1(x, a))2

]
= inf
f∈F
‖f − TπQk−1‖2µ (26)

Combining equations (22), (25) and (26), we can conclude that

P
{
‖Qk − TπQk−1‖2µ − 4 inf

f∈F
‖f − TπQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
+ exp

(
− 3

416
· nε
C2

)
thus implying

P
{
‖Qk − TπQk−1‖µ − 2 inf

f∈F
‖f − TπQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
(27)

We now can further upper-bound the term 2 inff∈F ‖f − TπQk−1‖µ ≤ 2 supf ′∈F inff∈F ‖f − Tπf ′‖µ = 2dπF (the worst-
case inherent Bellman evaluation error), leading to the final bound for the Bellman non-realizable case.

One may wish to further remove the inherent Bellman evaluation error from our error bound. However, counter-examples
exist where the inherent Bellman error cannot generally be estimated using function approximation (see section 11.6 of
(Sutton & Barto, 2018)). Fortunately, inherent Bellman error can be driven to be small by choosing rich function class F
(low bias), at the expense of more samples requirement (higher variance, through higher pseudo-dimension dimF).

While the bound in (27) looks more complicated than the Bellman realizable case in equation 21, note that the convergence
rate will still be O( 1

n2 ).

E.3. Bounding the error across iterations

Previous sub-sections E.2 and E.2 have analyzed the error of FQE for a single iteration in Bellman realizable and non-
realizable case. We now analyze how errors from different iterations flow through the FQE algorithm. The proof borrows
the idea from lemma 3 and 4 of (Munos & Szepesvári, 2008) for fitted value iteration (for value function V instead of Q),
with appropriate modifications for our off-policy evaluation context.

Recall that Cπ, Qπ denote the true value function and action-value function, respectively, under the evaluation policy π.
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And CK = E[QK(x, π(x))] denote the value function associated with the returned function QK from algorithm 3. Our goal
is to bound the difference Cπ − CK between the true value function and the estimated value of the returned function QK .

Let the unknown state-action distribution induced by the evaluation policy π be ρ. We first bound the loss ‖Qπ −QK‖ρ
under the “test-time ”distribution ρ of (x, a), which differs from the state-action µ induced by data-generating policy πD.
We will then lift the loss bound from QK to CK .

Step 1: Upper-bound the value estimation error

Let εk−1 = Qk − TπQk−1 ∈ X×A, C. We have for every k that
Qπ −Qk = TπQπ − TπQk−1 + εk−1 (Qπ is fixed point of Tπ)

= γPπ(Qπ −Qk−1) + εk−1

Thus by simple recursion

Qπ −QK =

K−1∑
k=0

γK−k−1(Pπ)K−k−1εk + γK(Pπ)K(Qπ −Q0)

=
1− γK+1

1− γ

[
K−1∑
k=0

(1− γ)γK−k−1

1− γK+1
(Pπ)K−k−1εk +

(1− γ)γK

1− γK+1
(Pπ)K(Qπ −Q0)

]

=
1− γK+1

1− γ

[
K−1∑
k=0

αkAkεk + αKAK(Qπ −Q0)

]
(28)

where for simplicity of notations, we denote

αk =
(1− γ)γK−k−1

1− γK+1
for k < K,αK =

(1− γ)γK

1− γK+1

Ak = (Pπ)K−k−1, AK = (Pπ)K

Note that Ak’s are probability kernels and αk’s are deliberately chosen such that
∑
k αk = 1.

We can apply point-wise absolute value on both sides of (28) with |f | being the short-hand notation for |f(x, a)| and
inequality holds point-wise. By triangle inequalities:

|Qπ −QK | ≤
1− γK+1

1− γ

[
K−1∑
k=0

αkAk|εk|+ αKAK |Qπ −Q0|

]
(29)

Step 2: Bounding ‖Qπ −QK‖ρ for any unknown distribution ρ. To handle distribution shift from µ to ρ, we decompose
the loss as follows:

‖Qπ −QK‖2ρ =

∫
ρ(dx, da) (Qπ(x, a)−QK(x, a))

2

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[(
K−1∑
k=0

αkAk|εk|+ αKAK |Qπ −Q0|

)
(x, a)

]2

(from(29))

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αk(Akεk)2 + αK(AK(Q∗ −Q0))2

]
(x, a) (Jensen)

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αkAkε
2
k + αKAK(Q∗ −Q0)2

]
(x, a) (Jensen)

Using assumption 3 (assumption 1 of the main paper), we can bound each term ρAk as
ρAk = ρ(Pπ)K−k−1 ≤ µβµ(K − k − 1) (definition D.3)

Thus

‖Qπ −QK‖2ρ ≤
[

1− γK+1

1− γ

]2
[

1

1− γK+1

K−1∑
k=0

(1− γ)γK−k−1βµ(K − k − 1) ‖εk‖2µ + αK(2C)2

]
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Assumption 3 (stronger than necessary for proof of FQE) can be used to upper-bound the first order concentration coefficient:

(1− γ)
∑
m≥0

γmβµ(m) ≤ γ

1− γ

(1− γ)2
∑
m≥1

mγm−1βµ(m)

 =
γ

1− γ
βµ

This gives the upper-bound for ‖Qπ −QK‖2ρ as

‖Qπ −QK‖2ρ ≤
[

1− γK+1

1− γ

]2 [
γ

(1− γ)(1− γK+1)
βµ max

k
‖εk‖2µ +

(1− γ)γK

1− γK+1
(2C)2

]
≤ 1− γK+1

(1− γ)2

[
γ

1− γ
βµ max

k
‖εk‖2µ + (1− γ)γK(2C)2

]
≤ γ

(1− γ)3
βµ max

k
‖εk‖2µ +

γK

1− γ
(2C)2

Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b, we conclude that

‖Qπ −QK‖ρ ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
‖εk‖µ +

γK/2

(1− γ)1/2
2C

)
(30)

Step 3: Turning error bound from Q to |Cπ − CK | Now we can choose ρ to be the state-action distribution by the
evaluation policy π. The error bound on the value function C follows simply by integrating inequality (30) over state-action
pairs induced by π. The final error across iterations can be related to individual iteration error by

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
‖εk‖µ +

γK/2

(1− γ)1/2
2C

)
(31)

E.4. Finite-sample guarantees for Fitted Q Evaluation

Combining results from (21), (27) and (31), we have the final guarantees for FQE under both realizable and general cases.

Realizable Case - Proof of theorem E.2. From (21), when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

,
we have ‖εk‖µ < ε with probability at least 1− δ/K for any 0 ≤ k < K. Thus we conclude that for any ε > 0, 0 < δ < 1,
after K iterations of Fitted Q Evaluation, the value estimate returned by QK satisfies:

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµε+

γK/2

(1− γ)1/2
2C

)
holds with probability 1− δ when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

. This concludes the
proof of theorem E.2.

Non-realizable Case - Proof of theorem E.1 and theorem 4.2 of main paper. Similarly, from (27) we have

P
{
‖Qk − TπQk−1‖µ − 2 inf

f∈F
‖f − TπQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
Since inff∈F ‖f − TπQk−1‖µ ≤ suph∈F inff∈F ‖f − Tπh‖µ = dπF (the inherent Bellman evaluation error), similar
arguments to the realizable case lead to the conclusion that for any ε > 0, 0 < δ < 1, after K iterations of FQE:

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµ(2dπF + ε) +

γK/2

(1− γ)1/2
2C

)
holds with probability 1− δ when n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, thus finishes the proof of theorem E.1.

Note that in both cases, the Õ( 1
ε2 ) dependency of n is significant improvement over previous finite-sample analysis of

related approximate dynamic programming algorithms (Munos & Szepesvári, 2008; Antos et al., 2008b;a). This dependency
matches that of previous analysis using linear function approximators from (Lazaric et al., 2012; 2010) for LSTD and LSPI
algorithms. Here our analysis, using similar assumptions, is applicable for general non-linear, bounded function classes. ,
which is an improvement over convergence rate of O( 1

n4 ) in related approximate dynamic programming algorithms (Antos
et al., 2008a;b; Munos & Szepesvári, 2008).
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F. Finite-Sample Analysis of Fitted Q Iteration (FQI)
F.1. Algorithm and Discussion

Algorithm 4 Fitted Q Iteration with Function Approximation: FQI(c) (Ernst et al., 2005)
Input: Collected data set D = {xi, ai, x′i, ci}ni=1. Function class F
1: Initialize Q0 ∈ F randomly
2: for k = 1, 2, . . . ,K do
3: Compute target yi = ci + γminaQk−1(x

′
i, a) ∀i

4: Build training set D̃k = {(xi, ai), yi}ni=1

5: Solve a supervised learning problem:
Qk = argmin

f∈F

1
n

∑n
i=1(f(xi, ai)− yi)

2

Output: πK(·) = argmin
a

QK(·, a) (greedy policy with respect to the returned function QK )

The analysis of FQI (algorithm 4) follows analogously from the analysis of FQE from the previous section (Appendix E).
For brevity, we skip certain detailed derivations, especially those that are largely identical to FQE’s analysis.

To the best of our knowledge, a finite-sample analysis of FQI with general non-linear function approximation has not been
published (Continuous FQI from (Antos et al., 2008a) is in fact a Fitted Policy Iteration algorithm and is different from algo
4). In principle, one can adapt existing analysis of fitted value iteration (Munos & Szepesvári, 2008) and FittedPolicyQ
(Antos et al., 2008b;a) to show that under similar assumptions, among policies greedy w.r.t. functions in F, FQI will find
ε− optimal policy using n = Õ( 1

ε4 ) samples. We derive an improved analysis of FQI with general non-linear function
approximations, with better sample complexity of n = Õ( 1

ε2 ). We note that the appendix of (Lazaric & Restelli, 2011)
contains an analysis of LinearFQI showing similar rate to ours, albeit with linear function approximators.

In this section, we prove the following statement:

Theorem F.1 (Guarantee for FQI - General Case (theorem 4.3 in main paper)). Under Assumption 3, for any ε > 0, δ ∈ (0, 1),
after K iterations of Fitted Q Iteration (algorithm 4), for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with

probability 1− δ:

C∗ − C(πK) ≤ 2γ

(1− γ)3

(√
βµ (2dF + ε) + 2γK/2C

)
where πK is the policy greedy with respect to the returned function QK , and C∗ is the value of the optimal policy.

The key steps to the proof follow similar scheme to the proof of FQE. We first bound the error for each iteration, and then
analyze how the errors flow through the algorithm.

F.2. Single iteration error bound ‖Qk − TQk−1‖µ
Here µ is the state-action distribution induced by the data-generating policy πD.

We begin with the decomposition:
‖Qk − TQk−1‖2µ = E

[
(Qk(x, a)− y)2

]
− E

[
(TQk−1(x, a)− y)2

]
=

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)}

+

{
2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)}
= component 1 + component 2

For T the Bellman (optimality) operator (equation 16), TQk−1 is the regression function that minimizes square loss
min

h:RX×A 7→R
E|h(x, a) − y|2, with the random variables (x, a) ∼ µ and y = c(x, a) + γmina′ Qk−1(x′, a′) where x′ ∼

p(x′|x, a). Invoking lemma E.5 and following the steps similar to equations (18),(19),(20) and (21) from appendix E, we
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can bound the first component as

P(component 1 > ε/2) ≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
(32)

Let f∗ = arg inf
f∈F

‖f − TQk−1‖2µ. Since Qk = arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2, we can upper-bound component 2 by

component 2 ≤ 2 ·

(
1

n

n∑
i=1

(f∗(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)

Let random variable z = ((x, a), y), zi = ((xi, ai), yi), i = 1, . . . , n and let
h(z) = (f∗(x, a)− y)2 − (TQk−1(x, a)− y)2

We have |h(z)| ≤ 4C2. We can derive a bound for P
(

1
n

∑n
i=1 h(zi)− Eh(z) > ε

4 + Eh(z)
)

using Bernstein inequality,
similar to equations (23) and (24) from appendix E to obtain:

P

(
2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
>
ε

2

)
≤ exp

(
− 3

416
· nε
C2

)
(33)

Now we have

component 2 ≤ 2 · 1

n

n∑
i=1

h(zi) = 2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
+ 4Eh(z)

Since
Eh(z) = ED̃k

[
(f∗(x, a)− y)2

]
− ED̃k

[
(TQk−1(x, a)− y)2

]
= ED̃k

[
(f∗(x, a)− TQk−1(x, a))2

]
= inf
f∈F
‖f − TQk−1‖2µ (34)

Combining equations (32), (33) and (34), we obtain that

P
{
‖Qk − TQk−1‖2µ − 4 inf

f∈F
‖f − TQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
+ exp

(
− 3

416
· nε
C2

)
(35)

F.3. Propagation of error bound for ‖Q∗ −QπK‖ρ
The analysis of error propagation for FQI is more involved than that of FQE, but the proof largely follows the error
propagation analysis in lemma 3 and 4 of (Munos & Szepesvári, 2008) in the fitted value iteration context (for V function).
We include the Q function’s (slighly more complicated) derivation here for completeness.

Recall that πK is greedy wrt the learned function QK returned by FQI. We aim to bound the difference C∗ − CπK between
the optimal value function and that πK . For a (to-be-specified) distribution ρ of state-action pairs (different from the data
distribution µ), we bound the generalization loss ‖Q∗ −QπK‖ρ
Step 1: Upper-bound the propagation error (value). Let εk−1 = Qk − TQk−1. We have that
Q∗ −Qk = Tπ

∗
Q∗ − Tπ

∗
Qk−1 + Tπ

∗
Qk−1 − TQk−1 + εk−1 ≤ Tπ

∗
Q∗ − Tπ

∗
Qk−1 + εk−1 (b/c TQk−1 ≥ Tπ

∗
Qk−1)

= γPπ
∗
(Q∗ −Qk−1) + εk−1

Thus by recursion Q∗ −QK ≤
∑K−1
k=0 γK−k−1(Pπ

∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ −Q0)

Step 2: Lower-bound the propagation error (value). Similarly
Q∗ −Qk = TQ∗ − Tπk−1Q∗ + Tπk−1Q∗ − TQk−1 + εk−1 ≥ Tπk−1Q∗ − TQk−1 + εk−1 (as TQ∗ ≥ Tπk−1Q∗)

≥ Tπk−1Q∗ − Tπk−1Qk−1 + εk−1 (b/c πk−1 greedy wrt Qk−1)

= γPπk−1(Q∗ −Qk−1) + εk−1

And by recursion Q∗ −QK ≥
∑K−1
k=0 γK−k−1(PπK−1PπK−2 . . . Pπk+1)εk + γK(PπK−1PπK−2 . . . Pπ0)(Q∗ −Q0)
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Step 3: Upper-bound the propagation error (policy). Beginning with a decomposition of value wrt to policy πK
Q∗ −QπK = Tπ

∗
Q∗ − Tπ

∗
QK + Tπ

∗
QK − TπKQK + TπKQK − TπKQπK

≤ (Tπ
∗
Q∗ − Tπ

∗
QK) + (TπKQK − TπKQπK ) ( since Tπ

∗
QK ≤ TQK = TπKQK)

= γPπ
∗
(Q∗ −QK) + γPπK (QK −QπK )

= γPπ
∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK )

Thus leading to (I − γPπK )(Q∗ − QπK ) ≤ γ(Pπ
∗ − PπK )(Q∗ − QK) The operator (I − γPπK ) is invertible and

(I − γPπK )−1 =
∑
m≥0 γ

m(PπK )m is monotonic. Thus

Q∗ −QπK ≤ γ(I − γPπK )−1(Pπ
∗
− PπK )(Q∗ −QK)

= γ(I − γPπK )−1Pπ
∗
(Q∗ −QK)− γ(I − γPπK )−1PπK (Q∗ −QK) (36)

Applying inequalities from Step 1 and Step 2 to the RHS of (36), we have

Q∗ −QπK ≤ (I − γPπK )−1

[K−1∑
k=0

γK−k
(

(Pπ
∗
)K−k − PπKPπK−1 . . . Pπk+1

)
εk

+ γK+1
(

(Pπ
∗
)K+1 − (PπKPπK−1 . . . Pπ0)

)
(Q∗ −Q0)

]
(37)

Next we apply point-wise absolute value on RHS of (37), with |εk| being the short-hand notation for |εk(x, a)| point-wise.
Using triangle inequalities and rewriting (37) in a more compact form ((Munos & Szepesvári, 2008)):

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAK |Q∗ −Q0|

]
where αk = (1−γ)γK−k−1

1−γK+1 for k < K,αK = (1−γ)γK

1−γK+1 and

Ak =
1− γ

2
(I − γPπK )−1

[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
for k < K

AK =
1− γ

2
(I − γPπK )−1

[
(Pπ

∗
)K+1 + PπKPπK−1 . . . Pπ0

]
Note that Ak’s are probability kernels that combine the Pπi terms and αk’s are chosen such that

∑
k αk = 1.

Step 4: Bounding ‖Q∗ −QπK‖2ρ for any test distribution ρ.

This step handles distribution shift from µ to ρ (similar to Step 2 from sub-section E.3 of appendix E)

‖Q∗ −QπK‖2ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αkAkε
2
k + αKAK(Q∗ −Q0)2

]
(x, a) (twice Jensen)

Using assumption 3 (assumption 1 in the main paper), each term ρAk is bounded as

ρAk =
1− γ

2
ρ(I − γPπK )−1

[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
=

1− γ
2

∑
m≥0

γmρ(PπK )m
[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
≤ (1− γ)

∑
m≥0

γmβµ(m+K − k)µ (def D.3)

Thus

‖Q∗ −QπK‖2ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2
 1

1− γK+1

K−1∑
k=0

(1− γ)2
∑
m≥0

γm+K−k−1βµ(m+K − k) ‖εk‖2µ + αK(2C)2


≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
βµ max

k
‖εk‖2µ +

(1− γ)γK

1− γK+1
(2C)2

]
(assumption 3)

≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
βµ max

k
‖εk‖2µ +

γK

1− γK+1
(2C)2

]
≤
[

2γ

(1− γ)2

]2 [
βµ max

k
‖εk‖2µ + γK(2C)2

]
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Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b, we thus conclude that

‖Q∗ −QπK‖ρ ≤
2γ

(1− γ)2

(√
βµ max

k
‖εk‖µ + 2γK/2C

)
(38)

Step 5: Bounding C∗ − CπK Using the performance difference lemma (lemma 6.1 of (Kakade & Langford, 2002), which
states that C∗ − CπK = − 1

1−γEx∼dπK
a∼πK

A∗ [x, a]. We can upper-bound the performance difference of value function as

C∗ − CπK =
1

1− γ
Ex∼dπK
a∼πK

[C∗(x)−Q∗(x, a)] =
1

1− γ
Ex ∼dπK [C∗(x)−Q∗(x, πK(x))]

≤ 1

1− γ
Ex ∼dπK [Q∗(x, π∗(x))−QK(x, π∗(x)) +QK(x, πK(x)−Q∗(x, πK(x))] (greedy)

≤ 1

1− γ
Ex ∼dπK |Q

∗(x, π∗(x))−QK(x, π∗(x))|+ |QK(x, πK(x)−Q∗(x, πK(x))|

≤ 1

1− γ

(
‖Q∗ −QπK‖dπK×π∗ + ‖Q∗ −QπK‖dπK×πK

)
(upper-bound 1-norm by 2-norm)

≤ 2γ

(1− γ)3

(√
βµ max

k
‖εk‖µ + 2γK/2C

)
(39)

Note that inequality (39) follows from (38) by specifying ρ = χPπKPπ
∗

and ρ = χPπKPπK , respectively (χ is the initial
state distribution).

F.4. Finite-sample guarantees for Fitted Q Iteration

From (35) we have:

P
{
‖Qk − TQk−1‖µ − 2 inf

f∈F
‖f − TQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
Note that inff∈F ‖f − TQk−1‖µ ≤ suph∈F inff∈F ‖f − Th‖µ = dF (the inherent Bellman error from equation 16).
Combining with equation (39), we have the conclusion that for any ε > 0, 0 < δ < 1, after K iterations of Fitted Q Iteration,
and for πK the greedy policy wrt QK :

C∗ − CπK ≤
2γ

(1− γ)3

(√
βµ(2dF + ε) + 2γK/2C

)
holds with probability 1− δ when n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
.

Note that compared to the Fitted Value Iteration analysis of (Munos & Szepesvári, 2008), our error includes an extra factor 2
for dF.

F.5. Statement for the Bellman-realizable Case

To facilitate the end-to-end generalization analysis of theorem 4.4 in the main paper, we include a version of FQI analysis
under Bellman-realizable assumption in this section. The theorem is a consequence of previous analysis in this section.

Assumption 5 (Bellman evaluation realizability). We consider function classes F sufficiently rich so that ∀f,Tf ∈ F.

Theorem F.2 (Guarantee for FQI - Bellman-realizable Case). Under Assumption 3 and 5, for any ε > 0, δ ∈ (0, 1), after
K iterations of Fitted Q Iteration, for n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)
, we have with

probability 1− δ:

C∗ − C(πK) ≤ 2γ

(1− γ)3

(√
βµε+ 2γK/2C

)
where πK is the policy greedy with respect to the returned function QK , and C∗ is the value of the optimal policy.
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G. Additional Instantiation of Meta-Algorithm (algorithm 1)
We provide an additional instantiation of the meta-algorithm described in the main paper, with Online Gradient Descent
(OGD) (Zinkevich, 2003) and Least-Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003) as subroutines. Using LSPI
requires a feature map φ such that any state-action pair can be represented by k features. The value function is linear in
parameters represented by φ. Policy representation is simplified to a weight vector w ∈ Rk.

Similar to our main algorithm 2, OGD updates require bounded parameters λ. We thus introduce hyper-parameter B as the
bound of λ in `2 norm. The gradient update is projected to the `2 ball when the norm of λ exceeds B (line 15 of algorithm
5).

Algorithm 5 Batch Learning under Constraints using Online Gradient Descent and Least-Squares Policy Iteration
Input: Dataset D = {xi, ai, x′i, ci, gi}ni=1 ∼ πD. Online algorithm parameters: `2 norm bound B, learning rate η
Input: Number of basis function k. Basis function φ (feature map for state-action pairs)

1: Initialize λ1 = (0, . . . , 0) ∈ Rm
2: for each round t do
3: Learn wt ← LSPI(c+ λ>t g) // LSPI with cost c+ λ>t g

4: Evaluate Ĉ(wt)← LSTDQ(wt, c) // Algo 7 with πt, cost c
5: Evaluate Ĝ(wt)← LSTDQ(wt, g) // Algo 7 with πt, cost g
6: ŵt ← 1

t

∑t
t′=1 wt′

7: Ĉ(ŵt)← 1
t

∑t
t′=1 Ĉ(wt′), Ĝ(ŵt)← 1

t

∑t
t′=1 Ĝ(wt′)

8: λ̂t ← 1
t

∑t
t′=1 λt′

9: Learn w̃ ← LSPI(c+ λ̂>t g) // LSPI with cost c+ λ̂>t g

10: Evaluate Ĉ(w̃)← LSTDQ(w̃, c), Ĝ(w̃)← LSTDQ(w̃, g)

11: L̂max = max
λ,‖λ‖2≤B

(
Ĉ(ŵt) + λ>(Ĝ(ŵt)− τ)

)
12: L̂min = Ĉ(w̃) + λ̂>t (Ĝ(w̃)− τ)

13: if L̂max − L̂min ≤ ω then
14: Return π̂t greedy w.r.t ŵt

(
i.e., π̂t(x) = arg mina∈A ŵ

>
t φ(x, a) ∀x

)
15: λt+1 = P(λt − η(Ĝ(πt)− τ)) where projection P(λ) = B λ

max{B,‖λ‖2}

Algorithm 6 Least-Squares Policy Iteration: LSPI(c) (Lagoudakis & Parr, 2003)
Input: Stopping criterion ε

1: Initialize w′ ← w0

2: repeat
3: w ← w′

4: w′ ← LSTDQ(w, c)
5: until ‖w − w′‖ ≤ ε

Output: Policy weight w
(
i.e., π(x) = arg mina∈A w

>φ(x, a) ∀x
)

Algorithm 7 LSTDQ(w, c) (Lagoudakis & Parr, 2003)

1: Initialize Ã← 0 // k × k matrix
2: Initialize b̃← 0 // k × 1 vector
3: for each (x, a, x′, c) ∈ D do
4: a′ = argminã∈A w

>φ(x′, ã)

5: Ã← Ã+ φ(x, a)
(
φ(x, a)− γφ(x′, a′)

)>
6: b̃← b̃+ φ(x, a)c

7: w̃ ← Ã−1b̃
Output: w̃
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H. Additional Experimental Details
H.1. Environment Descriptions and Procedures

Figure 3. Depicting the FrozenLake and CarRacing environments.

Frozen Lake. The environment is a 8x8 grid as seen in Figure 3 (left), based on OpenAi’s FrozenLake-v0. In each episode,
the agent starts from S and traverse to goal G. While traversing the grid, the agent must avoid the pre-determined holes
denoted by H . If the agent steps off of the grid, the agent returns to the same grid location. The episode terminates when the
agent reaches the goal or falls into a hole. The arrows in Figure 3 (left) is an example policy returned by our algorithm,
showing an optimal route.

Denote Xholes as the set of all holes in the grid and Xgoal = {xgoal} is a singleton set representing the goal in the grid. The
contrained batch policy learning problem is:

min
π∈Π

C(π) = E[I(x′ 6∈ Xgoals)] = P(x′ 6∈ {xgoal})

s.t. G(π) = E[I(x′ ∈ Xholes)] = P(x′ ∈ Xholes) ≤ τ
(40)

We collect 5000 trajectories by selecting an action randomly with probability .95 and an action from a DDQN-trained model
with probability .05.Furthermore we set B = 30 and η = 50, the hyperparameters of our Exponentiated Gradient subroutine.
We set the threshold for the constraint τ = .1.

Car Racing. The environment is a racetrack as seen in Figure 3 (right), modified from OpenAi’s CarRacing-v0. In each
state, given by the raw pixels, the agent has 12 actions: a ∈ A = {(i, j, k)|i ∈ {−1, 0, 1}, j ∈ {0, 1}, k ∈ {0, .2}}. The
action tuple (i, j, k) cooresponds to steering angle, amount of gas applied and amount of brake applied, respectively. In each
episode, the agent starts at the same point on the track and must traverse over 95% of the track, given by a discretization of
281 tiles. The agent recieves a reward of + 1000

281 for each unique tile over which the agent drives. The agent receives a penalty
of −.1 per-time step. Our collected dataset takes the form: D = {(xt−6, xt−3, xt), at, (xt−3, xt, xt+3), ct, g0,t, g1,t} where
xi denotes the image at timestep i and at is applied 3 times between xt and xt+3. This frame-stacking option is common
practice in online RL for Atari and video games.In our collected dataset D, the maximum horizon is 469 time steps.

The first constraint concerns accumulated number of brakes, a proxy for smooth driving or acceleration. The second
constraint concerns how far the agent travels away from the center of the track, given by the Euclidean distance between the
agent and the closest point on the center of the track. Let Nt be the number of tiles that is collected by the agent in time t.
The constrained batch policy learning problem is:

min
π∈Π

E[

∞∑
t=0

γt(−1000

281
Nt + .1)]

s.t. G0(π) = E[

∞∑
t=0

γtI(at ∈ Abraking)] ≤ τ0

G1(π) = E[

∞∑
t=0

γtd(ut, vt)] ≤ τ1

(41)

We instatiate our subroutines, FQE and FQI, with multi-layered CNNs. Furthermore we set B = 10 and η = .01, the
hyperparameters of our Exponentiated Gradient subroutine. We set the threshold for the constraint to be about 75% of the
value exhibited by online RL agent trained by DDQN (Van Hasselt et al., 2016).
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Figure 4. (First and Second figures) Result of 2-D grid-search for one-shot, regularized policy learning for LSPI (left) and FQI (right).
(Third and Fourth figures) value range of individual policies in our mixtured policy and data generating policy πD for main objective (left)
and cost constraint (right)

H.2. Additional Discussion for the Car Racing Experiment

Regularized policy learning and grid-search. We perform grid search over a range of regularization parameters λ for
both Least-Squares Policy Iteration - LSPI ((Lagoudakis & Parr, 2003)) and Fitted Q Iteration - FQI ((Ernst et al., 2005)).
The results, seen from the the first and second plot of Figure 4, show that one-shot regularized learning has difficulty
learning a policy that satisfies both constraints. We augment LSPI with non-linear feature mapping from one of our best
performing FQI model (using CNNs representation). While both regularized LSPI and regularized FQI can achieve low
main objective cost, the constraint cost values tend to be sensitive with the λ step. Overall for the whole grid search, about
10% of regularized policies satisfy both constraints, while none of the regularized LSPI policy satisfies both constraints.

Mixture policy and de-randomization. As our algorithm returned a mixture policy, it is natural to analyze the performance
of individual policies in the mixture. The third and fourth plot from Figure 4 show the range of performance of individual
policy in our mixture (purple band). We compare individual policy return with the stochastic behavior of the data generation
policy. Note that our policies satisfy constraints almost always, while the individual policy returned in the mixture also tends
to outperform πD with respect to the main objective cost.

Off-policy evaluation standalone comparison. Typically, inverse propensity scoring based methods call for stochastic
behavior and evaluation policies (Precup et al., 2000; Swaminathan & Joachims, 2015). However in this domain, the
evaluation policy and environment are both deterministic, with long horizon (the max horizon is D is 469). Consequently
Per-Decision Importance Sampling typically evaluates the policy as 0. In general, off-policy policy evaluation in long-
horizon domains is known to be challenging (Liu et al., 2018; Guo et al., 2017). We augment PDIS by approximating
the evaluation policy with a stochastic policy, using a softmin temperature parameter. However, PDIS still largely shows
significant errors. For Doubly Robust and Weighted Doubly Robust methods, we train a model of the environment as
follows:

• a 32-dimensional representation of state input is learned using variational autoencoder. Dimensionality reduction is
necessary to aid accuracy, as original state dimension is 96× 96× 3

• an LSTM is used to learn the transition dynamics P (z(x′)|z(x), a), where z(x) is the low-dimensional representation
learned from previous step. Technically, using a recurrent neural networks is an augmentation to the dynamical
modeling, as true MDPs typically do not require long-term memory

• the model is trained separately on a different dataset, collected indendently from the dataset D used for evaluation

The architecture of our dynamics model is inspired by recent work in model-based online policy learning (Ha & Schmidhuber,
2018). However, despite our best effort, learning the dynamics model accurately proves highly challenging, as the horizon
and dimensionality of this domain are much larger than popular benchmarks in the OPE literature (Jiang & Li, 2016;
Thomas & Brunskill, 2016; Farajtabar et al., 2018). The dynamics model has difficulty predicting the future state several
time steps away. Thus we find that the long-horizon, model-based estimation component of DR and WDR in this high-
dimensional setting is not sufficiently accurate. For future work, a thorough benchmarking of off-policy evaluation methods
in high-dimensional domains would be a valuable contribution.


